Blog

Subcategories from this category:

Building Blocks

New EnamineStore Update

2e0500fc-03dd-4c17-8564-af6594c2146b

Since our trial release of the new EnamineStore last year we’ve been hard at work moving the rest of the functionality to the new web store and listening to the feedback we’ve received from our users. Even though we still have things to catch up on and review we think our application is ready to welcome all of our user base.

Continue reading
549 Hits

What’s Going On With Fluorine In 2022?

No doubt Fluorine is an extremely important element for Medicinal chemistry. There are tons of reviews with numerous examples of cases when the introduction of Fluorine or fluorinated groups led to the improvement of activity, selectivity, ADME-properties of the molecules therefore every year we commonly see many fluorinated molecules among FDA-approved drugs.

Continue reading
2618 Hits

Enamine Store is getting an update


Time for the Enamine Store update

We are excited to announce that despite all the difficulties we faced with the Russian Invasion of Ukraine we are launching an all-new user interface for our web store.

Our team has been working tirelessly to upgrade our enaminestore.com over the past year. We believe that our reimagined design will help you enjoy your experience and make our services easier to use.

Visit new web store

Continue reading
1427 Hits

Protein Degraders Are on the Rise

proteine degraders

Image credit:Dilok Klaisataporn, iStock.

 

Proteins are essential components of living matter – they function as building blocks for cells and tissues, as well as participate in signaling and practically all biochemical activities. However, each protein operates correctly only for a limited amount of time and is eliminated by molecular machinery after it has reached its “functional shelflife”. To maintain a healthy and functional proteome, cells tightly control protein turnover processes, ensuring that misfolded, damaged, and old proteins exit the game in a timely manner. This sophisticated mechanism of degradation was recently hijacked by the drug discovery industry to develop new small molecule therapies — protein degraders.

Continue reading
1924 Hits

Drug Building Blocks and Libraries at Risk in Ukraine

Three months of the full-scale ruzzian invasion are over however it’s still really heartwarming for as at Enamine to get more and more words and signs of support from our customers and partners. The recent example is our joint letter to Science journal initiated by our friends from UCSF John J. Irwin and Brian K. Shoichet.

Continue reading
1916 Hits

Macro Space: the REAL Space of macrocycles

Macro_Space

As I already wrote in my previous post, we at Enamine are constantly working on extending our REAL concept (where REAL is for REadily AccessibLe compounds). Basically, this concept allows for the generation of a virtual chemical space based on the experimentally validated synthetic accessibility. Until now the REAL Space has comprised 15.5 billion make-on-demand molecules and is currently the largest offer of commercially available compounds. It was shown that this chemical space is especially useful in combination with high-throughput virtual screening techniques (see Nature 2019, 566, 224–229 and Nature 2020, 580, 663–668); there is also a number of other ways to access it.

Continue reading
2420 Hits

REAL Space rapidly expands

blog_REA_20201106-121014_1

More than a decade ago, we have launched an in-house project on the generation of a virtual compound database based on the experimentally validated synthetic accessibility (the so-called REAL Database, where REAL is for REadily AccessibLe). Further extension of this concept led to the development of REAL Space, a searchable chemical space that is not typically stored as an enumerated database but generated upon query through chemoinformatics software. Until now the largest REAL Space has comprised 15.5 billion make-on-demand molecules and is currently the largest offer of commercially available compounds. Recently, utility of the REAL methodology was confirmed by discovery of highly potent AmpC β-lactamase inhibitors, D4 dopamine receptor ligands, and Kelch-like ECH-associated protein 1 (KEAP1) inhibitors published in Nature (see Nature 2019, 566, 224–229 and Nature 2020, 580, 663–668).

Continue reading
2999 Hits

A housane that our chemists built

Housane-News

A diastereoselective approach to cis- and trans-1,3-disubstituted bicyclo[2.1.0]pentanes (housanes) was recently reported by our chemists in The Journal of Organic Chemistry. The article included preparation of 35 derivatives on up to 100 g scale. Moreover, pKa’s and conformational features of selected examples of housanes (e.g. GABA analogues) were also studied and compared to that of the corresponding 1,3-disubstituted cyclopentanes. For an extended list of novel housanes check the Enamine Store page.

3559 Hits

Paper by Enamine chemists is featured on the JOC cover

JOC_cover_20200120

In a recent JOC paper, Enamine chemists reported a comprehensive study of regioselective [3 + 2] cycloaddition reactions – an efficient approach towards 3,5-disubstituted isoxazole building blocks bearing mono-, di- or trifluoromethyl substituents. More than 100 derivatives were obtained on up to 130 g scale, and multigram quantities of representative examples are available from EnamineStore at the isoxazole library.

2596 Hits

Introducing alkyl substituent into the piperidine core goes multigram

piperidine_2020

Enamine’s EurJOC paper on the scalable and regioselective preparation of all isomeric (cyclo)alkyl piperidines and the corresponding amino alcohols was featured on the cover of the issue. The multigram quantities of these derivatives are available from EnamineStore at the piperidine library

 

2939 Hits

A New Paper by Enamine’s Scientists: "Synthesis and chemical transformations of diazolyl α,α-difluoroacetates"

Blog_20191217

Recent Enamine’s paper disclosed novel heteroaryl difluoroacetates and the corresponding carboxylic acids, amides, nitriles and alcohols as promising building block in drug design. Known literature example of metabolism-directed optimization of 3-aminopyrazinone acetamide thrombin inhibitor 1 led to the the corresponding 2,2-difluoro-2-pyridin-2-yl derivative 2, which is not prone to metabolic oxidation at the α-methylene group next to the aromatic moiety.

2819 Hits

A New Review Paper by Enamine’s Scientists: "The Symbiotic Relationship Between Drug Discovery and Organic Chemistry”

The_symbiotic_relationship_between_drug_discovery_and_organic_chemistry

The review mentioned in the title was published in Chemistry – A European journal and emerged from a collaboration of scientists from Enamine Ltd. (including myself) and Duncan Judd from Awridian Ltd. Despite some “symbiotic” hype in the title (as it was pointed out by one of the reviewers), the paper provides a comprehensive overview of concepts which appeared at the edge of these disciplines recently. Initially, we have aimed at tutorial review that might help synthetic chemists to become familiar with state-of-the-art in the field. Thus, genesis of concepts like “…-oriented” syntheses (DOS, LOS, BIOS, FOS, DTS), as well as related “abbreviated” strategies (BBs, FBDD, DEL, REAL) has been discussed, together with recent advances focusing mainly on chemical aspects.

Continue reading
3701 Hits

"Hot"​ Research Areas in Drug Discovery -- 2019

Ho_20190619-142440_1

Things like gene editing, stem cells, immunotherapies and new types of biologics are now mega-trends in the pharmaceutical industry, widely covered in media, and I guess there is little doubt that biology is the next big thing in medicine. However, in this post I would like to outline several promising areas in small molecule drug discovery, suggesting a lot of untapped potential and investment prospects in this more “traditional” pharmaceutical research space.

 

1.Targeting ribonucleic acid (RNA)

 

The majority of existing marketed drugs out there are designed to somehow modulate proteins in the body, thereby disrupting a disease progression. However, going one step back and trying to disrupt a pathological process earlier -- right before a protein is actually made in the body -- seems a powerful concept. This can be achieved by influencing ribonucleic acid (RNA), a central actor molecule in the process of gene expression -- the one leading to the formation of proteins as instructed by the human genome.

 

Continue reading
3614 Hits

New Building Blocks For Drug Discovery Are Getting Closer: Gem-difluorocyclopropane-derived Amines

Artwork by Web Design Studio "ZORELiT"

(This article originally appeared at Sciencetrends.com)

 

Modern drug discovery relies heavily on the ability of chemists to produce good starting points for producing high-quality lead compounds. Several concepts were established in the last two decades to aim synthetic organic chemistry onto the proper areas of chemical space, in particular, the so-called lead-oriented approach which describes paradigm shift towards low-molecular-weight, relatively hydrophilic, conformationally restricted, sp3-enriched structures.

Continue reading
3253 Hits

Hunting For New Drug Discovery Ideas In The CLOUD

20171116_173639_Cloud

Patient diversity and developing drug resistance can undermine the efficiency of existing therapies in a long-term pharmacological treatment of diseases, such as cancer and infections.

Continue reading
3162 Hits

Expanding Horizons for Fragment Based Drug Discovery (FBDD)

20170403_120713_cover

Scientists estimated that the human genome encodes above 20,000 different proteins in our body. However, available public databases contain records of known ligands for only about 10% of all proteins. The rest of proteins remains either not yet properly explored, or is labelled “undruggable”.

Continue reading
3842 Hits

FOLLOW US