Building Blocks Catalog

300 Thousand compounds in stock

Original and unique

Make-on-demand
Building Blocks

1B novel building blocks

Reliable supply

Custom Synthesis

Over 650 highly skillful chemists

Unique synthesis technologies

Library Synthesis

48B Billion REAL compounds and

Custom Library Synthesis

FTE Chemistry Support

On site access to all Enamine stock BB’s

Highly flexible arrangements

2 000 new building blocks are synthesized monthly. Here is an important update to our MedChem Highlights from March 2024

Recent News

  • 11 April 2024   Press Release

    Metrion Biosciences enhances High Throughput Screening services with access ...

    Cambridge, UK and Kyiv, Ukraine, 11 April 2024: Metrion Biosciences Limited (“Metrion”), the specialist ion channel and cardiac safety screening contract research organisation (CRO) and drug discovery company, and Enamine Ltd (“Enamine”), the global leader in supplying small molecules and early drug discovery services, announced that Metrion has enhanced its High Throughput Screening (HTS) services with the addition of access to Enamine’s compound libraries.

  • 27 March 2024   Press Release

    Enamine Announces Expansion of Its Library Synthesis Capabilities

    March, 2024, Kyiv, Ukraine. Enamine Ltd, the global leader in supplying small molecules and early drug discovery services, announces the expansion of its library synthesis capabilities with a focus on Enamine REAL compounds to further support the growing demands of agricultural and pharmaceutical companies, research institutes, and drug discovery centers.

  • 01 March 2024   News

    Enamine and Genez International Announce Strategic Collaboration to Launch ...

    We are excited to announce a strategic collaboration between Enamine, the world's leading provider of chemical building blocks, compound libraries, and biology services, and Genez International, a prominent enterprise with 15 years of experience in cross-border supply management, biopharmaceutical research and development, semiconductor equipment, and high-definition digital imaging systems.

J. Biol. Chem. , 2014, 289 (33), 22723-22738

DOI: 10.1074/jbc.M114.575050

Ilinykh P. A.; Tigabu B.; Ivanov A.; Ammosova T.; Obukhov Y.; Garron T.; Kumari N.; Kovalskyy D.; Platonov M. O.; Naumchik V. S.; Freiberg A. N.; Nekhai S.; Bukreyev A.

The filovirus Ebola (EBOV) causes the most severe hemorrhagic fever known. The EBOV RNA-dependent polymerase complex includes a filovirus-specific VP30, which is critical for the transcriptional but not replication activity of EBOV polymerase; to support transcription, VP30 must be in a dephosphorylated form. Here we show that EBOV VP30 is phosphorylated not only at the N-terminal serine clusters identified previously but also at the threonine residues at positions 143 and 146. We also show that host cell protein phosphatase 1 (PP1) controls VP30 dephosphorylation because expression of a PP1-binding peptide cdNIPP1 increased VP30 phosphorylation. Moreover, targeting PP1 mRNA by shRNA resulted in the overexpression of SIPP1, a cytoplasm-shuttling regulatory subunit of PP1, and increased EBOV transcription, suggesting that cytoplasmic accumulation of PP1 induces EBOV transcription. Furthermore, we developed a small molecule compound, 1E7-03, that targeted a non-catalytic site of PP1 and increased VP30 dephosphorylation. The compound inhibited the transcription but increased replication of the viral genome and completely suppressed replication of EBOV in cultured cells. Finally, mutations of Thr143 and Thr146 of VP30 significantly inhibited EBOV transcription and strongly induced VP30 phosphorylation in the N-terminal Ser residues 29–46, suggesting a novel mechanism of regulation of VP30 phosphorylation. Our findings suggest that targeting PP1 with small molecules is a feasible approach to achieve dysregulation of the EBOV polymerase activity. This novel approach may be used for the development of antivirals against EBOV and other filovirus species.

Role of Protein Phosphatase 1 in Dephosphorylation of Ebola Virus VP30 Protein and Its Targeting for the Inhibition of Viral Transcription

Ilinykh P. A.; Tigabu B.; Ivanov A.; Ammosova T.; Obukhov Y.; Garron T.; Kumari N.; Kovalskyy D.; Platonov M. O.; Naumchik V. S.; Freiberg A. N.; Nekhai S.; Bukreyev A.
J. Biol. Chem. 2014, 289 (33), 22723-22738
DOI: 10.1074/jbc.M114.575050

FOLLOW US