Building Blocks Catalog

300 Thousand compounds in stock

Original and unique

Make-on-demand
Building Blocks

1B novel building blocks

Reliable supply

Custom Synthesis

Over 650 highly skillful chemists

Unique synthesis technologies

Library Synthesis

48B Billion REAL compounds and

Custom Library Synthesis

FTE Chemistry Support

On site access to all Enamine stock BB’s

Highly flexible arrangements

2 000 new building blocks are synthesized monthly. Here is an important update to our MedChem Highlights from February 2024

Recent News

  • 27 March 2024   Press Release

    Enamine Announces Expansion of Its Library Synthesis Capabilities

    March, 2024, Kyiv, Ukraine. Enamine Ltd, the global leader in supplying small molecules and early drug discovery services, announces the expansion of its library synthesis capabilities with a focus on Enamine REAL compounds to further support the growing demands of agricultural and pharmaceutical companies, research institutes, and drug discovery centers.

  • 01 March 2024   News

    Enamine and Genez International Announce Strategic Collaboration to Launch ...

    We are excited to announce a strategic collaboration between Enamine, the world's leading provider of chemical building blocks, compound libraries, and biology services, and Genez International, a prominent enterprise with 15 years of experience in cross-border supply management, biopharmaceutical research and development, semiconductor equipment, and high-definition digital imaging systems.

  • 21 February 2024   Press Release

    Cresset Announces Global Collaboration With Enamine on New Virtual ...

    Cresset recently announced a collaboration with Enamine, the world’s leading provider of chemical building blocks and drug discovery services to develop innovative new solutions for the early drug discovery process.

Upcoming events

Nature 2020, 579 (7800), 609-614

DOI: 10.1038/s41586-020-2027-0

Stein R.; Kang H.; McCorvy J.; Glatfelter G.; Jones A.; Che T.; Slocum S.; Huang X.; Savych O.; Moroz Y.; Stauch B.; Johansson L.; Cherezov V.; Kenakin T.; Irwin J.; Shoichet B.; Roth B.; Dubocovich M.

The neuromodulator melatonin synchronizes circadian rhythms and related physiological functions via actions at two G protein-coupled receptors: MT1 and MT2. Circadian release of high nighttime levels of melatonin from the pineal gland activates melatonin receptors in the suprachiasmatic nucleus of the hypothalamus, synchronizing physiology and behavior to the light-dark cycle. The two receptors are established drug targets for aligning circadian phase in disorders of sleep and depression. Despite their importance, few if any in vivo active MT1 selective ligands have been reported, hampering both the understanding of circadian biology and the development of targeted therapeutics. Here we docked over 150 million virtual molecules against an MT1 crystal structure, prioritizing structural fit and chemical novelty. Thirty-eight high-ranking molecules were synthesized and tested, revealing ligands in the 470 pM to 6 μM range. Structure-based optimization led to two selective MT1 inverse agonists, topologically unrelated to previously explored chemotypes, that were tested in mouse models of circadian behavior. Unexpectedly, the MT1-selective inverse agonists advanced the phase of the mouse circadian clock by 1.3-1.5 hrs when given at subjective dusk, an agonist-like effect eliminated in MT1- but not in MT2-knockout mice. This study illustrates opportunities for modulating melatonin receptor biology via MT1-selective ligands, and for the discovery of new, in vivo-active chemotypes from structure-based screens of diverse, ultra-large libraries.

FOLLOW US