J. Chem. Inf. Model. 2024, 64 (1), 42-56
DOI: 10.1021/acs.jcim.3c01524
Machine Learning (ML) techniques face significant challenges when predicting advanced chemical properties, such as yield, feasibility of chemical synthesis, and optimal reaction conditions. These challenges stem from the high-dimensional nature of the prediction task and the myriad essential variables involved, ranging from reactants and reagents to catalysts, temperature, and purification processes. Successfully developing a reliable predictive model not only holds the potential for optimizing high-throughput experiments but can also elevate existing retrosynthetic predictive approaches and bolster a plethora of applications within the field. In this review, we systematically evaluate the efficacy of current ML methodologies in chemoinformatics, shedding light on their milestones and inherent limitations. Additionally, a detailed examination of a representative case study provides insights into the prevailing issues related to data availability and transferability in the discipline.