search
Login Form

Chem Rec. 2024, 24 (2), e202300276

DOI: 10.1002/tcr.202300276

Komarov I.; Bugrov V.; Cherednychenko A.; Grygorenko O.

In the field of chemistry, model compounds find extensive use for investigating complex objects. One prime example of such object is the protein-ligand supramolecular interaction. Prediction the enthalpic and entropic contribution to the free energy associated with this process, as well as the structural and dynamic characteristics of protein-ligand complexes poses considerable challenges. This review exemplifies modeling approaches used to study protein-ligand binding (PLB) thermodynamics by employing pairs of conformationally constrained/flexible model molecules. Strategically designing the model molecules can reduce the number of variables that influence thermodynamic parameters. This enables scientists to gain deeper insights into the enthalpy and entropy of PLB, which is relevant for medicinal chemistry and drug design. The model studies reviewed here demonstrate that rigidifying ligands may induce compensating changes in the enthalpy and entropy of binding. Some "rules of thumb" have started to emerge on how to minimize entropy-enthalpy compensation and design efficient rigidified or flexible ligands.

 

Contact Us