Building Blocks Catalog

300 Thousand compounds in stock

Original and unique

Make-on-demand
Building Blocks

1B novel building blocks

Reliable supply

Custom Synthesis

Over 650 highly skillful chemists

Unique synthesis technologies

Library Synthesis

48B Billion REAL compounds and

Custom Library Synthesis

FTE Chemistry Support

On site access to all Enamine stock BB’s

Highly flexible arrangements

2 000 new building blocks are synthesized monthly. Here is an important update to our MedChem Highlights from March 2024

Recent News

  • 11 April 2024   Press Release

    Metrion Biosciences enhances High Throughput Screening services with access ...

    Cambridge, UK and Kyiv, Ukraine, 11 April 2024: Metrion Biosciences Limited (“Metrion”), the specialist ion channel and cardiac safety screening contract research organisation (CRO) and drug discovery company, and Enamine Ltd (“Enamine”), the global leader in supplying small molecules and early drug discovery services, announced that Metrion has enhanced its High Throughput Screening (HTS) services with the addition of access to Enamine’s compound libraries.

  • 27 March 2024   Press Release

    Enamine Announces Expansion of Its Library Synthesis Capabilities

    March, 2024, Kyiv, Ukraine. Enamine Ltd, the global leader in supplying small molecules and early drug discovery services, announces the expansion of its library synthesis capabilities with a focus on Enamine REAL compounds to further support the growing demands of agricultural and pharmaceutical companies, research institutes, and drug discovery centers.

  • 01 March 2024   News

    Enamine and Genez International Announce Strategic Collaboration to Launch ...

    We are excited to announce a strategic collaboration between Enamine, the world's leading provider of chemical building blocks, compound libraries, and biology services, and Genez International, a prominent enterprise with 15 years of experience in cross-border supply management, biopharmaceutical research and development, semiconductor equipment, and high-definition digital imaging systems.

Upcoming events

Inorg. Chem. 2015, 54 (11), 5169-5181

DOI: 10.1021/ic503061z

Sotnik S. A.; Polunin R. A.; Kiskin M. A.; Kirillov A. M.; Dorofeeva V. N.; Gavrilenko K. S.; Eremenko I. L.; Novotortsev V. M.; Kolotilov S. V.

Linkage of the trigonal complex [Fe2NiO(Piv)6] (where Piv- = pivalate) by a series of polypyridine ligands, namely, tris(4-pyridyl)triazine (L2), 2,6-bis(3-pyridyl)-4-(4-pyridyl)pyridine (L3), N-(bis-2,2-(4-pyridyloxymethyl)-3-(4-pyridyloxy)propyl))pyridone-4 (L4), and 4-(N,N-diethylamino)phenyl-bis-2,6-(4-pyridyl)pyridine (L5) resulted in the formation of novel coordination polymers [Fe2NiO(Piv)6(L2)]n (2), [Fe2NiO(Piv)6(L3)]n (3), [Fe2NiO(Piv)6(L4)]nnHPiv (4), and [{Fe2NiO(Piv)6}4{L5}6]n•3nDEF (5, where DEF is N,N-diethylformamide), which were crystallographically characterized. The topological analysis of 3, 4, and 5 disclosed the 3,3,4,4-connected 2D (3, 4) or 3,4,4-connected 1D (5) underlying networks which, upon further simplification, gave rise to the uninodal 3-connected nets with the respective fes (3, 4) or SP 1-periodic net (4,4)(0,2) (5) topologies, driven by the cluster [Fe2Ni(μ3-O)(μ-Piv)6] nodes and the polypyridine μ3-L3,4 or μ2-L5 blocks. The obtained topologies were compared with those identified in other closely related derivatives [Fe2NiO(Piv)6(L1)]n (1) and {Fe2NiO(Piv)6}8{L6}12 (6), where L1 and L6 are tris(4-pyridyl)pyridine and 4-(N,N-dimethylamino)phenyl-bis-2,6-(4-pyridyl)pyridine, respectively. It was shown that a key structure-driven role in defining the dimensionality and topology of the resulting coordination network is played by the type of polypyridine spacer. Compounds 2 and 3 possess a porous structure, as confirmed by the N2 and H2 sorption data at 78 K. Methanol and ethanol sorption by 2 was also studied indicating that the pores filled by these substrates did not induce any structural rearrangement of this sorbent. Additionally, porous coordination polymer 2 was also applied as a heterogeneous catalyst for the condensation of salicylaldehyde or 9-anthracenecarbaldehyde with malononitrile. The best activity of 2 was observed in the case of salicylaldehyde substrate, resulting in up to 88% conversion into 2-imino-2H-chromen-3-carbonitrile.

Heterometallic Coordination Polymers Assembled from Trigonal Trinuclear Fe2Ni-Pivalate Blocks and Polypyridine Spacers: Topological Diversity, Sorption, and Catalytic Properties

FOLLOW US