search
Login Form
  1. SpaceGrow: efficient shape-based virtual screening of billion-sized combinatorial fragment spaces Hönig S.M.N.; Flachsenberg F.; Ehrt C.; Neumann A.; Schmidt R.; Lemmen C.; Rarey M. J Comput Aided Mol Des 2024, 38 (1), 13. DOI: 10.1007/s10822-024-00551-7
  2. The HZB F2X-Facility—An Efficient Crystallographic Fragment Screening Platform Barthel T.; Benz L.; Basler Y.; Crosskey T.; Dillmann A.; Förster R.; Fröling P.; Dieguez C. G.; Gless C.; Hauß T.; Hellmig M.; Jänisch L.; James D.; Lennartz F.; Mijatovic J.; Oelker M.; Scanlan J. W.; Weber G.; Wollenhaupt J.; Mueller U.; Dobbek H.; Wahl M. C.; Weiss M. S. Applied Research 2024, in press. DOI: 10.1002/appl.202400110
  3. Navigating Chemical Space Tarcsay A.; Volford A.; Buttrick J.; Christopherson J.-C.; Erdos M.; Szabo Z.B. Computational Drug Discovery: Methods and Applications 2024, 337-363. URL: 10.1002/9783527840748.ch15
  4. Generative artificial intelligence for small molecule drug design Kanakala G.C.; Devata S.; Chatterjee P.; Priyakumar U.D. Curr Opin Biotechnol 2024, 89, 103175. DOI: 10.1016/j.copbio.2024.103175
  5. Application scenario-oriented molecule generation platform developed for drug discovery Zheng L.; Shi F.; Peng C.; Xu M.; Fan F.; Li Y.; Zhang L.; Du J.; Wang Z.; Lin Z.; Sun Y.; Deng C.; Duan X.; Wei L.; Zhao C.; Fang L.; Zhang P.; Ma S.; Lai L.; Yang M. Methods 2024, 222, 112-121. DOI: 10.1016/j.ymeth.2023.12.009
  6. A data science roadmap for open science organizations engaged in early-stage drug discovery Edfeldt K.; Edwards A. M.; Engkvist O.; Gunther J.; Hartley M.; Hulcoop D. G.; Leach A. R.; Marsden B. D.; Menge A.; Misquitta L.; Muller S.; Owen D. R.; Schutt K. T.; Skelton N.; Steffen A.; Tropsha A.; Vernet E.; Wang Y.; Wellnitz J.; Willson T. M.; Clevert D. A.; Haibe-Kains B.; Schiavone L. H.; Schapira M. Nat Commun 2024, 15 (1), 5640. DOI: 10.1038/s41467-024-49777-x
  7. Identification of Novel Potent NSD2-PWWP1 Ligands Using Structure-Based Design and Computational Approaches Carlino L.; Astles P. C.; Ackroyd B.; Ahmed A.; Chan C.; Collie G. W.; Dale I. L.; O'Donovan D. H.; Fawcett C.; di Fruscia P.; Gohlke A.; Guo X.; Hao-Ru Hsu J.; Kaplan B.; Milbradt A. G.; Northall S.; Petrovic D.; Rivers E. L.; Underwood E.; Webb A. J Med Chem 2024, 67 (11), 8962-8987. DOI: 10.1021/acs.jmedchem.4c00215
  8. Hit me with your best shot: Integrated hit discovery for the next generation of drug targets Ashraf S.N.; Blackwell J.H.; Holdgate G.A.; Lucas S.C.C.; Solovyeva A.; Storer R.I.; Whitehurst B.C. Drug Discov Today 2024, 29 (10), 104143. DOI: 10.1016/j.drudis.2024.104143
  9. E-pharmacophore and deep learning based high throughput virtual screening for identification of CDPK1 inhibitors of Cryptosporidium parvum Asmare M.M.; Yun S.-I. Comput Biol Chem 2024, 112, 108172. DOI: 10.1016/j.compbiolchem.2024.108172
  10. Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery Manen-Freixa L.; Antolin A.A. Expert Opin Drug Discov 2024, 19 (9), 1043-1069. DOI: 10.1080/17460441.2024.2376643
  11. Enumerable Libraries and Accessible Chemical Space in Drug Discovery Knehans T.; Boyles N.A.; Bos P.H. Computational Drug Discovery: Methods and Applications 2024, 315-336. DOI: 10.1002/9783527840748.ch14
  12. Target-Aware Drug Activity Model: A Deep Learning Approach to Virtual HTS Czaplak S.; Frączek T.; Ambrogi F.; Kmicikiewicz M.; Wichard J.; Karawajczyk A. Artificial Neural Networks and Machine Learning (ICANN 2024) 2024, 15025, 73-87. DOI: 10.1007/978-3-031-72359-9_6
  13. Streamlining Large Chemical Library Docking with Artificial Intelligence: the PyRMD2Dock Approach Roggia M.; Natale B.; Amendola G.; Di Maro S.; Cosconati S. J Chem Inf Model 2024, 64 (7), 2143-2149. DOI: 10.1021/acs.jcim.3c00647
  14. Transformers for Molecular Property Prediction: Lessons Learned from the Past Five Years Sultan A.; Sieg J.; Mathea M.; Volkamer A. J Chem Inf Model 2024, 64 (16), 6259-6280. DOI: 10.1021/acs.jcim.4c00747
  15. Exploring Chemical Spaces in the Billion Range: Is Docking a Computational Alternative to DNA-Encoded Libraries? Mihalovits L.M.; Szalai T.V.; Bajusz D.; Keserű G.M. J Chem Inf Model 2024, in press. DOI: 10.1021/acs.jcim.4c00803
  16. High Performance Binding Affinity Prediction with a Transformer-Based Surrogate Model Vasan A.; Gokdemir O.; Brace A.; Ramanathan A.; Brettin T.; Stevens R.; Vishwanath V. 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) 2024, 571-580. DOI: 10.1109/IPDPSW63119.2024.00114
  17. Sulfamide instead of urea in Biginelli reaction: from black box to reality Lyapunov A.Y.; Tarnovskiy A.V.; Boron S.Y.; Rusanov E.B.; Grabchuk G.P.; Volochnyuk D.M.; Ryabukhin S.V. Org Chem Front 2024, 11 (8), 2155-2160. DOI: 10.1039/d3qo01926h
  18. Ultra-large scale virtual screening identifies a small molecule inhibitor of the Wnt transporter Wntless Yu J.; Liao P.-J.; Keller T.H.; Cherian J.; Virshup D.M.; Xu W. iScience 2024, 27 (8), 110454. DOI: 10.1016/j.isci.2024.110454
  19. Large-Scale Pretraining Improves Sample Efficiency of Active Learning-Based Virtual Screening Cao Z.; Sciabola S.; Wang Y. J Chem Inf Model 2024, 64 (6), 1882-1891. DOI: 10.1021/acs.jcim.3c01938
  20. Structure-based virtual screening of vast chemical space as a starting point for drug discovery Carlsson J.; Luttens A. Curr Opin Struct Biol 2024, 87, 102829. DOI: 10.1016/j.sbi.2024.102829
  21. In silico fragment-based discovery of CIB1-directed anti-tumor agents by FRASE-bot An Y.; Lim J.; Glavatskikh M.; Wang X.; Norris-Drouin J.; Hardy P.B.; Leisner T.M.; Pearce K.H.; Kireev D. Nat Commun 2024, 15 (1), 5564. DOI: 10.1038/s41467-024-49892-9
  22. Discovery of the small molecular inhibitors against sclerostin loop3 as potential anti-osteoporosis agents by structural based virtual screening and molecular design Yu S.; Huang W.; Zhang H.; Guo Y.; Zhang B.; Zhang G.; Lei J. Eur J Med Chem 2024, 271, 116414. DOI: 10.1016/j.ejmech.2024.116414
  23. Perspectives on current approaches to virtual screening in drug discovery Muegge I.; Bentzien J.; Ge Y. Expert Opin Drug Discov 2024, 19 (10), 1173-1183. DOI: 10.1080/17460441.2024.2390511
  24. Docking and other computing tools in drug design against SARS-CoV-2 Sulimov A.V.; Ilin I.S.; Tashchilova A.S.; Kondakova O.A.; Kutov D.C.; Sulimov V.B. SAR QSAR Environ Res 2024, 35 (2), 91-136. DOI: 10.1080/1062936X.2024.2306336
  25. The Pan-Canadian Chemical Library: A Mechanism to Open Academic Chemistry to High-Throughput Virtual Screening Bedart C.; Shimokura G.; West F.G.; Wood T.E.; Batey R.A.; Irwin J.J.; Schapira M. Sci Data 2024, 11 (1), 597. DOI: 10.1038/s41597-024-03443-5
  26. The IMS Library: from IN-Stock to Virtual Djikic-Stojsic T.; Bret G.; Blond G.; Girard N.; Le Guen C.; Marsol C.; Schmitt M.; Schneider S.; Bihel F.; Bonnet D.; Gulea M.; Kellenberger E. ChemMedChem 2024, 19 (20), e202400381. DOI: 10.1002/cmdc.202400381
  27. Pocket Crafter: a 3D generative modeling based workflow for the rapid generation of hit molecules in drug discovery Shen L.; Fang J.; Liu L.; Yang F.; Jenkins J.L.; Kutchukian P.S.; Wang H. J Cheminform 2024, 16 (1), 33. DOI: 10.1186/s13321-024-00829-w
  28. Structure-Based Ultra-Large Virtual Screenings Gorgulla C. Computational Drug Discovery: Methods and Applications: Volumes 1-2 2024, 441-470. URL: 10.1002/9783527840748.ch19
  29. ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery Bou A.; Thomas M.; Dittert S.; Navarro C.; Majewski M.; Wang Y.; Patel S.; Tresadern G.; Ahmad M.; Moens V.; Sherman W.; Sciabola S.; De Fabritiis G. J Chem Inf Model 2024, 64 (15), 5900-5911. DOI: 10.1021/acs.jcim.4c00895
  30. Shape-Aware Synthon Search (SASS) for Virtual Screening of Synthon-Based Chemical Spaces Cheng C.; Beroza P. J Chem Inf Model 2024, 64 (4), 1251-1260. DOI: 10.1021/acs.jcim.3c01865
  31. An artificial intelligence accelerated virtual screening platform for drug discovery Zhou G.; Rusnac D. V.; Park H.; Canzani D.; Nguyen H. M.; Stewart L.; Bush M. F.; Nguyen P. T.; Wulff H.; Yarov-Yarovoy V.; Zheng N.; DiMaio F. Nat Commun 2024, 15 (1), 7761. DOI: 10.1038/s41467-024-52061-7
  32. In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations Gutkin E.; Gusev F.; Gentile F.; Ban F.; Koby S.B.; Narangoda C.; Isayev O.; Cherkasov A.; Kurnikova M.G. Chem Sci 2024, 15 (23), 8800-8812. DOI: 10.1039/d3sc06880c
  33. Enhanced Calculation of Property Distributions in Chemical Fragment Spaces Lübbers J.; Lessel U.; Rarey M. J Chem Inf Model 2024, 64 (6), 2008-2020. DOI: 10.1021/acs.jcim.4c00147
  34. A time-efficient computational binding affinity estimation protocol with utilization of limited experimental data: A case study for adenosine receptor Cho I.; Moon S.; Cho K.-H. Bulletin of the Korean Chemical Society 2024, 45 (9), 778-787. DOI: 10.1002/bkcs.12890
  35. Accelerating BRPF1b hit identification with BioPhysical and Active Learning Screening (BioPALS) Pal S.; Nare Z.; Rao V.A.; Smith B.O.; Morrison I.; Fitzgerald E.A.; Scott A.; Bingham M.J.; Pesnot T. ChemMedChem 2024, 19 (6), e202300590. DOI: 10.1002/cmdc.202300590
  36. DFRscore: Deep Learning-Based Scoring of Synthetic Complexity with Drug-Focused Retrosynthetic Analysis for High-Throughput Virtual Screening Kim H.; Lee K.; Kim C.; Lim J.; Kim W.Y. J Chem Inf Model 2024, 64 (7), 2432-2444. DOI: 10.1021/acs.jcim.3c01134
  37. Subpocket Similarity-Based Hit Identification for Challenging Targets: Application to the WDR Domain of LRRK2 Eguida M.; Bret G.; Sindt F.; Li F.; Chau I.; Ackloo S.; Arrowsmith C.; Bolotokova A.; Ghiabi P.; Gibson E.; Halabelian L.; Houliston S.; Harding R.J.; Hutchinson A.; Loppnau P.; Perveen S.; Seitova A.; Zeng H.; Schapira M.; Rognan D. J Chem Inf Model 2024, 64 (13), 5344-5355. DOI: 10.1021/acs.jcim.4c00601
  38. A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules? Kristiadi A.; Strieth-Kalthoff F.; Skreta M.; Poupart P.; Aspuru-Guzik A.; Pleiss G. Proceedings of the 41st International Conference on Machine Learning 2024, 235, 25603-25622. URL: PMLR
  39. Quantum-Informed Molecular Representation Learning Enhancing ADMET Property Prediction Kim J.; Chang W.; Ji H.; Joung I. J Chem Inf Model 2024, 64 (13), 5028-5040. DOI: 10.1021/acs.jcim.4c00772
  40. Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches Lanka G.; Banerjee S.; Adhikari N.; Ghosh B. Mol Divers 2024, in press. DOI: 10.1007/s11030-024-10837-5
  41. AIDDISON: Empowering Drug Discovery with AI/ML and CADD Tools in a Secure, Web-Based SaaS Platform Rusinko A.; Rezaei M.; Friedrich L.; Buchstaller H.-P.; Kuhn D.; Ghogare A. J Chem Inf Model 2024, 64 (1), 3-8. DOI: 10.1021/acs.jcim.3c01016
  42. AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detection Clyde A.; Liu X.; Brettin T.; Yoo H.; Partin A.; Babuji Y.; Blaiszik B.; Mohd-Yusof J.; Merzky A.; Turilli M.; Jha S.; Ramanathan A.; Stevens R. Sci Rep 2023, 13 (1), 2105. DOI: 10.1038/s41598-023-28785-9
  43. Integrative Drug Discovery Platform: A Modular Approach for Efficient and Automated Virtual Screening Li T.; Xie L.; Zhang Z.; Li X.; Duan B.; Niu G.; Sun S.; Zhang F.; Zhang R.; Tan G.; Zhang C. 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2023, 365-372. DOI: 10.1109/BIBM58861.2023.10385402
  44. Targeting ROS production through inhibition of NADPH oxidases Reis J.; Gorgulla C.; Massari M.; Marchese S.; Valente S.; Noce B.; Basile L.; Torner R.; Cox H., 3rd; Viennet T.; Yang M. H.; Ronan M. M.; Rees M. G.; Roth J. A.; Capasso L.; Nebbioso A.; Altucci L.; Mai A.; Arthanari H.; Mattevi A. Nat Chem Biol 2023, 19 (12), 1540-1550. DOI: 10.1038/s41589-023-01457-5
  45. Discovery of novel A2AR antagonists through deep learning-based virtual screening Tang M.; Wen C.; Lin J.; Chen H.; Ran T. AI in Life Science Research 2023, 3, 100058. DOI: 10.1016/j.ailsci.2023.100058
  46. Targeting ion channels with ultra-large library screening for hit discovery Melancon K.; Pliushcheuskaya P.; Meiler J.; Künze G. Front Mol Neurosci 2023, 16, 1336004. DOI: 10.3389/fnmol.2023.1336004
  47. Integrated molecular modeling and dynamics approaches revealed potential natural inhibitors of NF-κB transcription factor as breast cancer therapeutics Zubair M.; Khalil S.; Rasul I.; Nadeem H.; Noor F.; Ahmad S.; Alrumaihi F.; Allemailem K. S.; Almatroudi A.; Alshehri F. F.; Alshehri Z. S. J Biomol Struct Dyn 2023, 41 (24), 14715-14729. DOI: 10.1080/07391102.2023.2214209
  48. Therapeutic disruption of RAD52–ssDNA complexation via novel drug-like inhibitors Bhat D. S.; Malacaria E.; Biagi L. D.; Razzaghi M.; Honda M.; Hobbs K. F.; Hengel S. R.; Pichierri P.; Spies M. A.; Spies M. NAR Cancer 2023, 5 (2), zcad018. DOI: 10.1093/narcan/zcad018
  49. Transferable Graph Neural Fingerprint Models for Quick Response to Future Bio-Threats Chen W.; Ren Y.; Kagawa A.; Carbone M.R.; Chen S.Y.-C.; Qu X.; Yoo S.; Clyde A.; Ramanathan A.; Stevens R.L.; Van Dam H.J.J.; Lu D. 2023 International Conference on Machine Learning and Applications (ICMLA) 2023, 800-807. DOI: 10.1109/ICMLA58977.2023.00117
  50. Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation Xiong Y.; Wang Y.; Wang Y.; Li C.; Yusong P.; Wu J.; Gu L.; Butch C.J. J Comput Aided Mol Des 2023, 37 (11), 507-517. DOI: 10.1007/s10822-023-00523-3
  51. De novo generated combinatorial library design Johansson S.V.; Haghir Chehreghani M.; Engkvist O.; Schliep A. Digital Discovery 2023, 3 (1), 122-135. DOI: 10.1039/d3dd00095h
  52. Discovery and development of small-molecule heparanase inhibitors Zhang Y.; Cui L. Bioorg Med Chem 2023, 90, 117335. DOI: 10.1016/j.bmc.2023.117335
  53. Galileo: Three-dimensional searching in large combinatorial fragment spaces on the example of pharmacophores Meyenburg C.; Dolfus U.; Briem H.; Rarey M. J Comput Aided Mol Des 2023, 37 (1), 1-16. DOI: 10.1007/s10822-022-00485-y
  54. The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking Cavasotto C.N.; Di Filippo J.I. J Chem Inf Model 2023, 63 (8), 2267-2280. DOI: 10.1021/acs.jcim.2c01471
  55. Deep learning workflow for the inverse design of molecules with specific optoelectronic properties Yoo P.; Bhowmik D.; Mehta K.; Zhang P.; Liu F.; Lupo Pasini M.; Irle S. Sci Rep 2023, 13 (1), 20031. DOI: 10.1038/s41598-023-45385-9
  56. Epik: pKa and Protonation State Prediction through Machine Learning Johnston R. C.; Yao K.; Kaplan Z.; Chelliah M.; Leswing K.; Seekins S.; Watts S.; Calkins D.; Chief Elk J.; Jerome S. V.; Repasky M. P.; Shelley J. C. J Chem Theory Comput 2023, 19 (8), 2380-2388. DOI: 10.1021/acs.jctc.3c00044
  57. Keeping pace with the explosive growth of chemical libraries with structure-based virtual screening Kuan J.; Radaeva M.; Avenido A.; Cherkasov A.; Gentile F. WIREs Computational Molecular Science 2023, 13 (6), e1678. DOI: 10.1002/wcms.1678
  58. Surely you are joking, Mr Docking! Gentile F.; Oprea T.I.; Tropsha A.; Cherkasov A. Chem Soc Rev 2023, 52 (3), 872-878. DOI: 10.1039/d2cs00948j
  59. Creation of targeted compound libraries based on 3D shape recognition Kyrylchuk A.; Kravets I.; Cherednichenko A.; Tararina V.; Kapeliukha A.; Dudenko D.; Protopopov M. Mol Divers 2023, 27 (2), 939-949. DOI: 10.1007/s11030-022-10447-z
  60. Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors Lanka G.; Begum D.; Banerjee S.; Adhikari N.; P Y.; Ghosh B. Comput Biol Med 2023, 166, 107481. DOI: 10.1016/j.compbiomed.2023.107481
  61. Targeting in silico GPCR conformations with ultra-large library screening for hit discovery D.; Batebi H.; Ledwitch K.; Hildebrand P.W.; Meiler J. Trends Pharmacol Sci 2023, 44 (3), 150-161. DOI: 10.1016/j.tips.2022.12.006
  62. Design of the Global Health chemical diversity library v2 for screening against infectious diseases Wilson C.; Gardner J. M. F.; Gray D. W.; Baragana B.; Wyatt P. G.; Cookson A.; Thompson S.; Mendoza-Martinez C.; Bodkin M. J.; Gilbert I. H.; Tarver G. J. PLoS Negl Trop Dis 2023, 17 (12), e0011799. DOI: 10.1371/journal.pntd.0011799
  63. Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical Libraries Sivula T.; Yetukuri L.; Kalliokoski T.; Käsnänen H.; Poso A.; Pöhner I. J Chem Inf Model 2023, 63 (18), 5773-5783. DOI: 10.1021/acs.jcim.3c01239
  64. Overlap of On-demand Ultra-large Combinatorial Spaces with On-the-shelf Drug-like Libraries Perebyinis M.; Rognan D. Mol Inform 2023, 42 (1), e2200163. DOI: 10.1002/minf.202200163
  65. Evaluating Scalable Supervised Learning for Synthesize-on-Demand Chemical Libraries Alnammi M.; Liu S.; Ericksen S. S.; Ananiev G. E.; Voter A. F.; Guo S.; Keck J. L.; Hoffmann F. M.; Wildman S. A.; Gitter A. J Chem Inf Model 2023, 63 (17), 5513-5528. DOI: 10.1021/acs.jcim.3c00912
  66. Navigating large chemical spaces in early-phase drug discovery Korn M.; Ehrt C.; Ruggiu F.; Gastreich M.; Rarey M. Curr Opin Struct Biol 2023, 80, 102578. DOI: 10.1016/j.sbi.2023.102578
  67. Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening Yu Y.; Cai C.; Wang J.; Bo Z.; Zhu Z.; Zheng H. J Chem Theory Comput 2023, 19 (11), 3336-3345. DOI: 10.1021/acs.jctc.2c01145
  68. Transferring a Molecular Foundation Model for Polymer Property Predictions Zhang P.; Kearney L.; Bhowmik D.; Fox Z.; Naskar A.K.; Gounley J. J Chem Inf Model 2023, 63 (24), 7689-7698. DOI: 10.1021/acs.jcim.3c01650
  69. Integrated data-driven and experimental approaches to accelerate lead optimization targeting SARS-CoV-2 main protease Varikoti R.A.; Schultz K.J.; Kombala C.J.; Kruel A.; Brandvold K.R.; Zhou M.; Kumar N. J Comput Aided Mol Des 2023, 37 (8), 339-355. DOI: 10.1007/s10822-023-00509-1
  70. Predicting the Likelihood of Molecules to Act as Modulators of Protein-Protein Interactions Wolk O.; Goldblum A. J Chem Inf Model 2023, 63 (1), 126-137. DOI: 10.1021/acs.jcim.2c00920
  71. Adaptive language model training for molecular design Blanchard A.E.; Bhowmik D.; Fox Z.; Gounley J.; Glaser J.; Akpa B.S.; Irle S. J Cheminform 2023, 15 (1), 59. DOI: 10.1186/s13321-023-00719-7
  72. CNN Use and Performance in Virtual Screening Chandegra B.; Prajapati P.; Prajapati J. Artificial Intelligence in Bioinformatics and Chemoinformatics 2023, 189-207. DOI: 10.1201/9781003353768-10
  73. Computational approaches streamlining drug discovery Sadybekov A.V.; Katritch V. Nature 2023, 616 (7958), 673-685. DOI: 10.1038/s41586-023-05905-z
  74. Managing the Drug Discovery Process (Second Edition) Miller S.; Moos W.; Munk B.; Munk S.; Hart C.; Spellmeyer D. 2023, 1-639. DOI: 10.1016/C2020-0-01031-5
  75. Inhibiting a promiscuous GPCR: iterative discovery of bitter taste receptor ligands Fierro F.; Peri L.; Hübner H.; Tabor-Schkade A.; Waterloo L.; Löber S.; Pfeiffer T.; Weikert D.; Dingjan T.; Margulis E.; Gmeiner P.; Niv M.Y. Cellular and Molecular Life Sciences 2023, 80 (4), 114. DOI: 10.1007/s00018-023-04765-0
  76. Fast Substructure Search in Combinatorial Library Spaces Liphardt T.; Sander T. J Chem Inf Model 2023, 63 (16), 5133-5141. DOI: 10.1021/acs.jcim.3c00290
  77. Recent Developments in Ultralarge and Structure-Based Virtual Screening Approaches Gorgulla C. Annual Review of Biomedical Data Science 2023, 6, 229-258. DOI: 10.1146/annurev-biodatasci-020222-025013
  78. Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development Hsieh C.-J.; Giannakoulias S.; Petersson E.J.; Mach R.H. Pharmaceuticals 2023, 16 (2), 317. DOI: 10.3390/ph16020317
  79. Shape-Based Virtual Screening of a Billion-Compound Library Identifies Mycobacterial Lipoamide Dehydrogenase Inhibitors Michino M.; Beautrait A.; Boyles N.A.; Nadupalli A.; Dementiev A.; Sun S.; Ginn J.; Baxt L.; Suto R.; Bryk R.; Jerome S.V.; Huggins D.J.; Vendome J. ACS Bio and Med Chem Au 2023, 3 (6), 507-515. DOI: 10.1021/acsbiomedchemau.3c00046
  80. Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system Gautam V.; Gaurav A.; Masand N.; Lee V.S.; Patil V.M. Mol Divers 2023, 27 (2), 959-985. DOI: 10.1007/s11030-022-10489-3
  81. Improved decision making with similarity based machine learning: applications in chemistry Lemm D.; Falk von Rudorff G.; Anatole von Lilienfeld O. Machine Learning: Science and Technology 2023, 4 (4), 045043. DOI: 10.1088/2632-2153/ad0fa3
  82. DIY Virtual Chemical Libraries - Novel Starting Points for Drug Discovery Takács G.; Havasi D.; Sándor M.; Dohánics Z.; Balogh G.T.; Kiss R. ACS Med Chem Lett 2023, 14 (9), 1188-1197. DOI: 10.1021/acsmedchemlett.3c00146
  83. Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries for Drug Discovery Zabolotna Y.; Bonachera F.; Horvath D.; Lin A.; Marcou G.; Klimchuk O.; Varnek A. J Chem Inf Model 2022, 62 (18), 4537-4548. DOI: 10.1021/acs.jcim.2c00509
  84. Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits Rossetti G.G.; Ossorio M.A.; Rempel S.; Kratzel A.; Dionellis V.S.; Barriot S.; Tropia L.; Gorgulla C.; Arthanari H.; Thiel V.; Mohr P.; Gamboni R.; Halazonetis T.D. Sci Rep 2022, 12 (1), 2505. DOI: 10.1038/s41598-022-06306-4
  85. Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory Beck H.; Härter M.; Haß B.; Schmeck C.; Baerfacker L. Drug Discov Today 2022, 27 (6), 1560-1574. DOI: 10.1016/j.drudis.2022.02.015
  86. A multi-reference poly-conformational method for in silico design, optimization, and repositioning of pharmaceutical compounds illustrated for selected SARSCoV-2 ligands Alexandrov V.; Kirpich A.; Kantidze O.; Gankin Y. PeerJ 2022, 10, e14252. DOI: 10.7717/peerj.14252
  87. Targeting Echinococcus multilocularis PIM kinase for improving anti-parasitic chemotherapy Koike A.; Becker F.; Sennhenn P.; Kim J.; Zhang J.; Hannus S.; Brehm K. PLoS Negl Trop Dis 2022, 16 (10), e0010483. DOI: 10.1371/journal.pntd.0010483
  88. Automating Genetic Algorithm Mutations for Molecules Using a Masked Language Model Blanchard A.E.; Shekar M.C.; Gao S.; Gounley J.; Lyngaas I.; Glaser J.; Bhowmik D. IEEE Transactions on Evolutionary Computation 2022, 26 (4), 793-799. DOI: 10.1109/TEVC.2022.3144045
  89. Exploration of Ultralarge Compound Collections for Drug Discovery Warr W.A.; Nicklaus M.C.; Nicolaou C.A.; Rarey M. J Chem Inf Model 2022, 62 (9), 2021-2034. DOI: 10.1021/acs.jcim.2c00224
  90. Virtual Screening in the Cloud Identifies Potent and Selective ROS1 Kinase Inhibitors Petrović D.; Scott J.S.; Bodnarchuk M.S.; Lorthioir O.; Boyd S.; Hughes G.M.; Lane J.; Wu A.; Hargreaves D.; Robinson J.; Sadowski J. J Chem Inf Model 2022, 62 (16), 3832-3843. DOI: 10.1021/acs.jcim.2c00644
  91. Identifying Novel Inhibitors for Hepatic Organic Anion Transporting Polypeptides by Machine Learning-Based Virtual Screening Tuerkova A.; Bongers B.J.; Norinder U.; Ungvári O.; Székely V.; Tarnovskiy A.; Szakács G.; Özvegy-Laczka C.; Van Westen G.J.P.; Zdrazil B. J Chem Inf Model 2022, 62 (24), 6323-6335. DOI: 10.1021/acs.jcim.1c01460
  92. Fully Automated Creation of Virtual Chemical Fragment Spaces Using the Open-Source Library OpenChemLib Wahl J.; Sander T. J Chem Inf Model 2022, 62 (9), 2202-2211. DOI: 10.1021/acs.jcim.1c01041
  93. The Ukrainian Factor in Early-Stage Drug Discovery in the Context of Russian Invasion: The Case of Enamine Ltd Kondratov I.S.; Moroz Y.S.; Grygorenko O.O.; Tolmachev A.A. ACS Med Chem Lett 2022, 13 (7), 992-996. DOI: 10.1021/acsmedchemlett.2c00211
  94. Accelerators for Classical Molecular Dynamics Simulations of Biomolecules Jones D.; Allen J.E.; Yang Y.; Drew Bennett W.F.; Gokhale M.; Moshiri N.; Rosing T.S. J Chem Theory Comput 2022, 18 (7), 4047-4069. DOI: 10.1021/acs.jctc.1c01214
  95. Challenges for chemistry in Ukraine after the war: Ukrainian science requires rebuilding and support Kondratov I.S.; Moroz Y.S.; Gorgulla C.; Grygorenko O.O.; Komarov I.V.; Wagner G.; Tolmachev A.A. Proc Natl Acad Sci U S A 2022, 119 (50), e2210686119. DOI: 10.1073/pnas.2210686119
  96. A multilevel generative framework with hierarchical self-contrasting for bias control and transparency in structure-based ligand design Chan L.; Kumar R.; Verdonk M.; Poelking C. Nature Machine Intelligence 2022, 4 (12), 1130-1142. DOI: 10.1038/s42256-022-00564-7
  97. Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces Bellmann L.; Klein R.; Rarey M. J Chem Inf Model 2022, 62 (11), 2800-2810. DOI: 10.1021/acs.jcim.2c00334
  98. Self-Focusing Virtual Screening with Active Design Space Pruning Graff D.E.; Aldeghi M.; Morrone J.A.; Jordan K.E.; Pyzer-Knapp E.O.; Coley C.W. J Chem Inf Model 2022, 62 (16), 3854-3862. DOI: 10.1021/acs.jcim.2c00554
  99. Rings in Clinical Trials and Drugs: Present and Future Shearer J.; Castro J.L.; Lawson A.D.G.; MacCoss M.; Taylor R.D. J Med Chem 2022, 65 (13), 8699-8712. DOI: 10.1021/acs.jmedchem.2c00473
  100. Magnet for the Needle in Haystack: "crystal Structure First" Fragment Hits Unlock Active Chemical Matter Using Targeted Exploration of Vast Chemical Spaces Muller J.; Klein R.; Tarkhanova O.; Gryniukova A.; Borysko P.; Merkl S.; Ruf M.; Neumann A.; Gastreich M.; Moroz Y. S.; Klebe G.; Glinca S. J Med Chem 2022, 65 (23), 15663-15678. DOI: 10.1021/acs.jmedchem.2c00813
  101. SynthI: A New Open-Source Tool for Synthon-Based Library Design Zabolotna Y.; Volochnyuk D.M.; Ryabukhin S.V.; Gavrylenko K.; Horvath D.; Klimchuk O.; Oksiuta O.; Marcou G.; Varnek A. J Chem Inf Model 2022, 62 (9), 2151-2163. DOI: 10.1021/acs.jcim.1c00754
  102. Artificial Intelligence in Compound Design Grebner C.; Matter H.; Hessler G. Artificial Intelligence in Drug Design 2022, 2390, 349-382. DOI: 10.1007/978-1-0716-1787-8_15
  103. Maximizing the integration of virtual and experimental screening in hit discovery Bajusz D.; Keserű G.M. Expert Opin Drug Discov 2022, 17 (6), 629-640. DOI: 10.1080/17460441.2022.2085685
  104. One-pot parallel synthesis of 1,3,5-trisubstituted 1,2,4-triazoles Radchenko D.S.; Naumchyk V.S.; Dziuba I.; Kyrylchuk A.A.; Gubina K.E.; Moroz Y.S.; Grygorenko O.O. Mol Divers 2022, 26 (2), 993-1004. DOI: 10.1007/s11030-021-10218-2
  105. Towards rational computational peptide design Chang L.; Mondal A.; Perez A. Front Bioinform 2022, 2 (), 1046493. DOI: 10.3389/fbinf.2022.1046493
  106. Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor Glaser J.; Sedova A.; Galanie S.; Kneller D. W.; Davidson R. B.; Maradzike E.; Del Galdo S.; Labbe A.; Hsu D. J.; Agarwal R.; Bykov D.; Tharrington A.; Parks J. M.; Smith D. M. A.; Daidone I.; Coates L.; Kovalevsky A.; Smith J. C. ACS Pharmacol Transl Sci 2022, 5 (4), 255-265. DOI: 10.1021/acsptsci.2c00026
  107. Identification of potential SARS-CoV-2 Mpro inhibitors integrating molecular docking and water thermodynamics Sobhia M.E.; Ghosh K.; Sivangula S.; Kumar S.; Singh H. J Biomol Struct Dyn 2022, 40 (11), 5079-5089. DOI: 10.1080/07391102.2020.1867642
  108. Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking Gentile F.; Yaacoub J.C.; Gleave J.; Fernandez M.; Ton A.-T.; Ban F.; Stern A.; Cherkasov A. Nature Protocols 2022, 17 (3), 672-697. DOI: 10.1038/s41596-021-00659-2
  109. Comparison of Combinatorial Fragment Spaces and Its Application to Ultralarge Make-on-Demand Compound Catalogs Bellmann L.; Penner P.; Gastreich M.; Rarey M. J Chem Inf Model 2022, 62 (3), 553-566. DOI: 10.1021/acs.jcim.1c01378
  110. Benchmarking ensemble docking methods in D3R Grand Challenge 4 Gan J.L.; Kumar D.; Chen C.; Taylor B.C.; Jagger B.R.; Amaro R.E.; Lee C.T. J Comput Aided Mol Des 2022, 36 (2), 87-99. DOI: 10.1007/s10822-021-00433-2
  111. Ultrahigh Throughput Protein–Ligand Docking with Deep Learning Clyde A. Artificial Intelligence in Drug Design 2022, 2390, 301-319. DOI: 10.1007/978-1-0716-1787-8_13
  112. Synthon-based ligand discovery in virtual libraries of over 11 billion compounds Sadybekov A. A.; Sadybekov A. V.; Liu Y.; Iliopoulos-Tsoutsouvas C.; Huang X. P.; Pickett J.; Houser B.; Patel N.; Tran N. K.; Tong F.; Zvonok N.; Jain M. K.; Savych O.; Radchenko D. S.; Nikas S. P.; Petasis N. A.; Moroz Y. S.; Roth B. L.; Makriyannis A.; Katritch V. Nature 2022, 601 (7893), 452-459. DOI: 10.1038/s41586-021-04220-9
  113. A Review on Parallel Virtual Screening Softwares for High-Performance Computers Murugan N.A.; Podobas A.; Gadioli D.; Vitali E.; Palermo G.; Markidis S. Pharmaceuticals 2022, 15 (1), 63. DOI: 10.3390/ph15010063
  114. Identification of novel protein kinase C-βII inhibitors: virtual screening, molecular docking and molecular dynamics simulation studies Sanapalli B.K.R.; Yele V.; Baldaniya L.; Karri V.V.S.R. J Mol Model 2022, 28 (5), 117. DOI: 10.1007/s00894-022-05104-z
  115. Computational Workflow for Accelerated Molecular Design Using Quantum Chemical Simulations and Deep Learning Models Blanchard A.E.; Zhang P.; Bhowmik D.; Mehta K.; Gounley J.; Reeve S.T.; Irle S.; Pasini M.L. Smoky Mountains Computational Sciences and Engineering Conferenc, SMC 2022 2022, 3-19. DOI: 10.1007/978-3-031-23606-8_1
  116. Molecular docking-based computational platform for high-throughput virtual screening Zhang B.; Li H.; Yu K.; Jin Z. CCF Trans High Perform Comput 2022, 4 (1), 63-74. DOI: 10.1007/s42514-021-00086-5
  117. Call for Papers for the Special Issue: From Reaction Informatics to Chemical Space Rarey M.; Nicklaus M.C.; Warr W. J Chem Inf Model 2021, 61 (4), 1531-1532. DOI: 10.1021/acs.jcim.1c00321
  118. Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data Bender A.; Cortes-Ciriano I. Drug Discov Today 2021, 26 (4), 1040-1052. DOI: 10.1016/j.drudis.2020.11.037
  119. Drug discovery for mycobacterium tuberculosis using structure-based computer-aided drug design approach Ejalonibu M.A.; Ogundare S.A.; Elrashedy A.A.; Ejalonibu M.A.; Lawal M.M.; Mhlongo N.N.; Kumalo H.M. Int J Mol Sci 2021, 22 (24), 13259. DOI: 10.3390/ijms222413259
  120. Enabling rapid COVID-19 small molecule drug design through scalable deep learning of generative models Jacobs S. A.; Moon T.; McLoughlin K.; Jones D.; Hysom D.; Ahn D. H.; Gyllenhaal J.; Watson P.; Lightstone F. C.; Allen J. E.; Karlin I.; Van Essen B. IJHPCA 2021, 35 (5), 469-482. DOI: 10.1177/10943420211010930
  121. Enamine Ltd.: The Science and Business of Organic Chemistry and Beyond Grygorenko O.O. Eur J Org Chem 2021, 2021 (47), 6474-6477. DOI: 10.1002/ejoc.202101210
  122. Discovery of Small-Molecule Inhibitors of SARS-CoV-2 Proteins Using a Computational and Experimental Pipeline Lau E. Y.; Negrete O. A.; Bennett W. F. D.; Bennion B. J.; Borucki M.; Bourguet F.; Epstein A.; Franco M.; Harmon B.; He S.; Jones D.; Kim H.; Kirshner D.; Lao V.; Lo J.; McLoughlin K.; Mosesso R.; Murugesh D. K.; Saada E. A.; Segelke B.; Stefan M. A.; Stevenson G. A.; Torres M. W.; Weilhammer D. R.; Wong S.; Yang Y.; Zemla A.; Zhang X.; Zhu F.; Allen J. E.; Lightstone F. C. Front Mol Biosci 2021, 8, 678701. DOI: 10.3389/fmolb.2021.678701
  123. Best Practices for Docking-Based Virtual Screening Neves B.J.; Mottin M.; Moreira-Filho J.T.; Sousa B.K.P.; Mendonca S.S.; Andrade C.H. Molecular Docking for Computer-Aided Drug Design 2021, 75-98. DOI: 10.1016/B978-0-12-822312-3.00001-1
  124. Deep learning in virtual screening: Recent applications and developments Kimber T.B.; Chen Y.; Volkamer A. Int J Mol Sci 2021, 22 (9), 4435. DOI: 10.3390/ijms22094435
  125. C@PA: Computer-Aided Pattern Analysis to Predict Multitarget ABC Transporter Inhibitors Namasivayam V.; Silbermann K.; Wiese M.; Pahnke J.; Stefan S.M. J Med Chem 2021, 64 (6), 3350-3366. DOI: 10.1021/acs.jmedchem.0c02199
  126. Accelerating high-throughput virtual screening through molecular pool-based active learning Graff D.E.; Shakhnovich E.I.; Coley C.W. Chem Sci 2021, 12 (22), 7866-7881. DOI: 10.1039/d0sc06805e
  127. Web-Based Quantitative Structure–Activity Relationship Resources Facilitate Effective Drug Discovery Wang Y.-L.; Li J.-Y.; Shi X.-X.; Wang Z.; Hao G.-F.; Yang G.-F. Top Curr Chem (Cham) 2021, 379 (6), 37. DOI: 10.1007/s41061-021-00349-3
  128. Challenges Encountered Applying Equilibrium and Nonequilibrium Binding Free Energy Calculations Baumann H.M.; Gapsys V.; De Groot B.L.; Mobley D.L. J Phys Chem B 2021, 125 (17), 4241-4261. DOI: 10.1021/acs.jpcb.0c10263
  129. From computer-aided drug discovery to computer-driven drug discovery Frye L.; Bhat S.; Akinsanya K.; Abel R. Drug Discov Today Technol 2021, 39, 111-117. DOI: 10.1016/j.ddtec.2021.08.001
  130. Structure-based drug repurposing against COVID-19 and emerging infectious diseases: Methods, resources and discoveries Masoudi-Sobhanzadeh Y.; Salemi A.; Pourseif M.M.; Jafari B.; Omidi Y.; Masoudi-Nejad A. Briefings in Bioinformatics 2021, 22 (6), bbab113. DOI: 10.1093/bib/bbab113
  131. Design concepts for DNA-encoded library synthesis Zhang Y.; Clark M.A. Bioorg Med Chem 2021, 41, 116189. DOI: 10.1016/j.bmc.2021.116189
  132. Prediction of chemical compounds properties using a deep learning model Galushka M.; Swain C.; Browne F.; Mulvenna M.D.; Bond R.; Gray D. Neural Comput & Applic 2021, 33 (20), 13345-13366. DOI: 10.1007/s00521-021-05961-4
  133. Discovery of Novel BRD4 Ligand Scaffolds by Automated Navigation of the Fragment Chemical Space Piticchio S. G.; Martinez-Cartro M.; Scaffidi S.; Rachman M.; Rodriguez-Arevalo S.; Sanchez-Arfelis A.; Escolano C.; Picaud S.; Krojer T.; Filippakopoulos P.; von Delft F.; Galdeano C.; Barril X. J Med Chem 2021, 64 (24), 17887-17900. DOI: 10.1021/acs.jmedchem.1c01108
  134. Topological Similarity Search in Large Combinatorial Fragment Spaces Bellmann L.; Penner P.; Rarey M. J Chem Inf Model 2021, 61 (1), 238-251. DOI: 10.1021/acs.jcim.0c00850
  135. Monitoring Large Scale Supercomputers: A Case Study with the Lassen Supercomputer Patki T.; Bertsch A.; Karlin I.; Ahn D.H.; Van Essen B.; Rountree B.; De Supinski B.R.; Besaw N. 2021 IEEE International Conference on Cluster Computing (CLUSTER) 2021, 468-480. DOI: 10.1109/Cluster48925.2021.00057
  136. Generative Deep Learning for Targeted Compound Design Sousa T.; Correia J.; Pereira V.; Rocha M. J Chem Inf Model 2021, 61 (11), 5343-5361. DOI: 10.1021/acs.jcim.0c01496
  137. Generative Models for de Novo Drug Design Tong X.; Liu X.; Tan X.; Li X.; Jiang J.; Xiong Z.; Xu T.; Jiang H.; Qiao N.; Zheng M. J Med Chem 2021, 64 (19), 14011-14027. DOI: 10.1021/acs.jmedchem.1c00927
  138. Chemical Topic Modeling - An Unsupervised Approach Originating from Text-mining to Organize Chemical Data Schneider N.; Fechner N.; Stiefl N.; Landrum G.A. Artificial Intelligence in Drug Discovery 2021, 17-44. DOI: 10.1039/9781788016841-00015
  139. Structure-based virtual screening of ultra-large library yields potent antagonists for a lipid gpcr Sadybekov A. A.; Brouillette R. L.; Marin E.; Sadybekov A. V.; Luginina A.; Gusach A.; Mishin A.; Besserer-Offroy E.; Longpre J. M.; Borshchevskiy V.; Cherezov V.; Sarret P.; Katritch V. Biomolecules 2020, 10 (12), 1-15. DOI: 10.3390/biom10121634
  140. BRADSHAW: a system for automated molecular design Green D. V. S.; Pickett S.; Luscombe C.; Senger S.; Marcus D.; Meslamani J.; Brett D.; Powell A.; Masson J. J Comput Aided Mol Des 2020, 34 (7), 747-765. DOI: 10.1007/s10822-019-00234-8
  141. Adapting CHMTRN (CHeMistry TRaNslator) for a New Use Judson P.N.; Ihlenfeldt W.-D.; Patel H.; Delannée V.; Tarasova N.; Nicklaus M.C. J Chem Inf Model 2020, 60 (7), 3336-3341. DOI: 10.1021/acs.jcim.0c00448
  142. Computational Approaches to Identify a Hidden Pharmacological Potential in Large Chemical Libraries Druzhilovskiy D.S.; Stolbov L.A.; Savosina P.I.; Pogodin P.V.; Filimonov D.A.; Veselovsky A.V.; Stefanisko K.; Tarasova N.I.; Nicklaus M.C.; Poroikov V.V. Supercomputing Frontiers and Innovations 2020, 7 (3), 57-76. DOI: 10.14529/jsfi200306
  143. Generating Multibillion Chemical Space of Readily Accessible Screening Compounds Grygorenko O.O.; Radchenko D.S.; Dziuba I.; Chuprina A.; Gubina K.E.; Moroz Y.S. iScience 2020, 23 (11), 101681. DOI: 10.1016/j.isci.2020.101681
  144. Computer-aided estimation of biological activity profiles of drug-like compounds taking into account their metabolism in human body Filimonov D.A.; Rudik A.V.; Dmitriev A.V.; Poroikov V.V. Int J Mol Sci 2020, 21 (20), 1-13. DOI: 10.3390/ijms21207492
  145. Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 Acharya A.; Agarwal R.; Baker M. B.; Baudry J.; Bhowmik D.; Boehm S.; Byler K. G.; Chen S. Y.; Coates L.; Cooper C. J.; Demerdash O.; Daidone I.; Eblen J. D.; Ellingson S.; Forli S.; Glaser J.; Gumbart J. C.; Gunnels J.; Hernandez O.; Irle S.; Kneller D. W.; Kovalevsky A.; Larkin J.; Lawrence T. J.; LeGrand S.; Liu S. H.; Mitchell J. C.; Park G.; Parks J. M.; Pavlova A.; Petridis L.; Poole D.; Pouchard L.; Ramanathan A.; Rogers D. M.; Santos-Martins D.; Scheinberg A.; Sedova A.; Shen Y.; Smith J. C.; Smith M. D.; Soto C.; Tsaris A.; Thavappiragasam M.; Tillack A. F.; Vermaas J. V.; Vuong V. Q.; Yin J.; Yoo S.; Zahran M.; Zanetti-Polzi L. J Chem Inf Model 2020, 60 (12), 5832-5852. DOI: 10.1021/acs.jcim.0c01010
  146. Characterizing human odorant signals: Insights from insect semiochemistry and in silico modelling Radadiya A.; Pickett J.A. Philos Trans R Soc Lond B Biol Sci 2020, 375 (1800), 20190263. DOI: 10.1098/rstb.2019.0263
  147. Chemoinformatics-based enumeration of chemical libraries: a tutorial Saldívar-González F.I.; Huerta-García C.S.; Medina-Franco J.L. J Cheminform 2020, 12 (1), 64. DOI: 10.1186/s13321-020-00466-z
  148. In silico strategies in tuberculosis drug discovery Macalino S.J.Y.; Billones J.B.; Organo V.G.; Carrillo M.C.O. Molecules 2020, 25 (3), 665. DOI: 10.3390/molecules25030665
  149. A Fragment Library of Natural Products and its Comparative Chemoinformatic Characterization Chávez-Hernández A.L.; Sánchez-Cruz N.; Medina-Franco J.L. Mol Inform 2020, 39 (11), e2000050. DOI: 10.1002/minf.202000050
  150. Autonomous Discovery in the Chem Scis Part II: Outlook Coley C.W.; Eyke N.S.; Jensen K.F. Angew Chem Int Ed Engl 2020, 59 (52), 23414-23436. DOI: 10.1002/anie.201909989
  151. Electrochemical Scaled-up Synthesis of Cyclic Enecarbamates as Starting Materials for Medicinal Chemistry Relevant Building Bocks Tereshchenko O. D.; Perebiynis M. Y.; Knysh I. V.; Vasylets O. V.; Sorochenko A. A.; Slobodyanyuk E. Y.; Rusanov E. B.; Borysov O. V.; Kolotilov S. V.; Ryabukhin S. V.; Volochnyuk D. M. Advanced Synthesis & Catalysis 2020, 362 (15), 3229-3242. DOI: 10.1002/adsc.202000450
  152. ZINC20 - A Free Ultralarge-Scale Chemical Database for Ligand Discovery Irwin J. J.; Tang K. G.; Young J.; Dandarchuluun C.; Wong B. R.; Khurelbaatar M.; Moroz Y. S.; Mayfield J.; Sayle R. A. J Chem Inf Model 2020, 60 (12), 6065-6073. DOI: 10.1021/acs.jcim.0c00675
  153. SAVI, in silico generation of billions of easily synthesizable compounds through expert-system type rules Patel H.; Ihlenfeldt W. D.; Judson P. N.; Moroz Y. S.; Pevzner Y.; Peach M. L.; Delannee V.; Tarasova N. I.; Nicklaus M. C. Sci Data 2020, 7 (1), 384. DOI: 10.1038/s41597-020-00727-4
  154. Automated de Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn? Grebner C.; Matter H.; Plowright A.T.; Hessler G. J Med Chem 2020, 63 (16), 8809-8823. DOI: 10.1021/acs.jmedchem.9b02044
  155. Can easy chemistry produce complex, diverse, and novel molecules? Tomberg A.; Boström J. Drug Discov Today 2020, 25 (12), 2174-2181. DOI: 10.1016/j.drudis.2020.09.027
  156. Autonomous Discovery in the Chem Scis Part I: Progress Coley C.W.; Eyke N.S.; Jensen K.F. Angew Chem Int Ed Engl 2020, 59 (51), 22858-22893. DOI: 10.1002/anie.201909987
  157. Focused Library Generator: case of Mdmx inhibitors Xia Z.; Karpov P.; Popowicz G.; Tetko I.V. J Comput Aided Mol Des 2020, 34 (7), 769-782. DOI: 10.1007/s10822-019-00242-8
  158. Multi-objective biofilm algorithm (MOBifi) for de novo drug design with special focus to anti-diabetic drugs Devi R.V.; Siva Sathya S.; Coumar M.S. Applied Soft Computing 2020, 96, 106655. DOI: 10.1016/j.asoc.2020.106655
  159. Screening of metal ions and organocatalysts on solid support-coupled DNA oligonucleotides guides design of DNA-encoded reactions Potowski M.; Losch F.; Wünnemann E.; Dahmen J.K.; Chines S.; Brunschweiger A. Chem Sci 2019, 10 (45), 10481-10492. DOI: 10.1039/c9sc04708e
  160. SAR by space: Enriching hit sets from the chemical space Klingler F. M.; Gastreich M.; Grygorenko O. O.; Savych O.; Borysko P.; Griniukova A.; Gubina K. E.; Lemmen C.; Moroz Y. S. Molecules 2019, 24 (17), 3096. DOI: 10.3390/molecules24173096
  161. Comparison of Large Chemical Spaces Lessel U.; Lemmen C. ACS Med Chem Lett 2019, 10 (10), 1504-1510. DOI: 10.1021/acsmedchemlett.9b00331
  162. Using Machine Learning to Inform Decisions in Drug Discovery: An Industry Perspective Green D.V.S. ACS Symposium Series 2019, 1326, 81-101. DOI: 10.1021/bk-2019-1326.ch005
  163. Prediction and Experimental Confirmation of Novel Peripheral Cannabinoid-1 Receptor Antagonists El-Atawneh S.; Hirsch S.; Hadar R.; Tam J.; Goldblum A. J Chem Inf Model 2019, 59 (9), 3996-4006. DOI: 10.1021/acs.jcim.9b00577
  164. Recent applications of machine learning in medicinal chemistry Panteleev J.; Gao H.; Jia L. Bioorg Med Chem Letters 2018, 28 (17), 2807-2815. DOI: 10.1016/j.bmcl.2018.06.046
  165. Practical aspects of machine learning for the design-synthesis-purify-assay workflow Sirockin F.; Stiefl N. Chimia 2018, 72 (9), 648-649. DOI: 10.2533/chimia.2018.648
  166. (Chlorosulfonyl)benzenesulfonyl Fluorides - Versatile Building Blocks for Combinatorial Chemistry: Design, Synthesis and Evaluation of a Covalent Inhibitor Library Tolmachova K. A.; Moroz Y. S.; Konovets A.; Platonov M. O.; Vasylchenko O. V.; Borysko P.; Zozulya S.; Gryniukova A.; Bogolubsky A. V.; Pipko S.; Mykhailiuk P. K.; Brovarets V. S.; Grygorenko O. O. ACS Comb Sci 2018, 20 (11), 672-680. DOI: 10.1021/acscombsci.8b00130
  167. Facile One-Pot Parallel Synthesis of 3-Amino-1,2,4-triazoles Bogolyubsky A. V.; Savych O.; Zhemera A. V.; Pipko S. E.; Grishchenko A. V.; Konovets A. I.; Doroshchuk R. O.; Khomenko D. N.; Brovarets V. S.; Moroz Y. S.; Vybornyi M. ACS Comb Sci 2018, 20 (7), 461-466. DOI: 10.1021/acscombsci.8b00060
  168. Straightforward hit identification approach in fragment-based discovery of bromodomain-containing protein 4 (BRD4) inhibitors Borysko P.; Moroz Y. S.; Vasylchenko O. V.; Hurmach V. V.; Starodubtseva A.; Stefanishena N.; Nesteruk K.; Zozulya S.; Kondratov I. S.; Grygorenko O. O. Bioorg Med Chem 2018, 26 (12), 3399-3405. DOI: 10.1016/j.bmc.2018.05.010
  169. An Old Story in the Parallel Synthesis World: An Approach to Hydantoin Libraries Bogolubsky A. V.; Moroz Y. S.; Savych O.; Pipko S.; Konovets A.; Platonov M. O.; Vasylchenko O. V.; Hurmach V. V.; Grygorenko O. O. ACS Comb Sci 2018, 20 (1), 35-43. DOI: 10.1021/acscombsci.7b00163
  170. Design, Virtual Screening, and Synthesis of Antagonists of αiIbβ3 as Antiplatelet Agents Polishchuk P. G.; Samoylenko G. V.; Khristova T. M.; Krysko O. L.; Kabanova T. A.; Kabanov V. M.; Kornylov A. Y.; Klimchuk O.; Langer T.; Andronati S. A.; Kuz'min V. E.; Krysko A. A.; Varnek A. J Med Chem 2015, 58 (19), 7681-7694. DOI: 10.1021/acs.jmedchem.5b00865
  171. Exploring virtual scaffold spaces Pitt W.R.; Kroeplien B. Scaffold Hopping in Medicinal Chemistry 2013, 83-104. DOI: 10.1002/9783527665143.ch05
  172. Approach to the library of fused pyridine-4-carboxylic acids by combes-type reaction of acyl pyruvates and electron-rich amino heterocycles Volochnyuk D. M.; Ryabukhin S. V.; Plaskon A. S.; Dmytriv Y. V.; Grygorenko O. O.; Mykhailiuk P. K.; Krotko D. G.; Pushechnikov A.; Tolmachev A. A. J Comb Chem 2010, 12 (4), 510-517. DOI: 10.1021/cc100040q
     

    Contact Us