The HZB F2X-Facility—An Efficient Crystallographic Fragment Screening PlatformBarthel T.; Benz L.; Basler Y.; Crosskey T.; Dillmann A.; Förster R.; Fröling P.; Dieguez C. G.; Gless C.; Hauß T.; Hellmig M.; Jänisch L.; James D.; Lennartz F.; Mijatovic J.; Oelker M.; Scanlan J. W.; Weber G.; Wollenhaupt J.; Mueller U.; Dobbek H.; Wahl M. C.; Weiss M. S.Applied Research2024,
in press.
DOI: 10.1002/appl.202400110
Navigating Chemical SpaceTarcsay A.; Volford A.; Buttrick J.; Christopherson J.-C.; Erdos M.; Szabo Z.B.Computational Drug Discovery: Methods and Applications2024,
337-363. URL: 10.1002/9783527840748.ch15
Generative artificial intelligence for small molecule drug designKanakala G.C.; Devata S.; Chatterjee P.; Priyakumar U.D.Curr Opin Biotechnol2024,
89,
103175.
DOI: 10.1016/j.copbio.2024.103175
Application scenario-oriented molecule generation platform developed for drug discoveryZheng L.; Shi F.; Peng C.; Xu M.; Fan F.; Li Y.; Zhang L.; Du J.; Wang Z.; Lin Z.; Sun Y.; Deng C.; Duan X.; Wei L.; Zhao C.; Fang L.; Zhang P.; Ma S.; Lai L.; Yang M.Methods2024,
222,
112-121.
DOI: 10.1016/j.ymeth.2023.12.009
A data science roadmap for open science organizations engaged in early-stage drug discoveryEdfeldt K.; Edwards A. M.; Engkvist O.; Gunther J.; Hartley M.; Hulcoop D. G.; Leach A. R.; Marsden B. D.; Menge A.; Misquitta L.; Muller S.; Owen D. R.; Schutt K. T.; Skelton N.; Steffen A.; Tropsha A.; Vernet E.; Wang Y.; Wellnitz J.; Willson T. M.; Clevert D. A.; Haibe-Kains B.; Schiavone L. H.; Schapira M.Nat Commun2024,
15 (1),
5640.
DOI: 10.1038/s41467-024-49777-x
Identification of Novel Potent NSD2-PWWP1 Ligands Using Structure-Based Design and Computational ApproachesCarlino L.; Astles P. C.; Ackroyd B.; Ahmed A.; Chan C.; Collie G. W.; Dale I. L.; O'Donovan D. H.; Fawcett C.; di Fruscia P.; Gohlke A.; Guo X.; Hao-Ru Hsu J.; Kaplan B.; Milbradt A. G.; Northall S.; Petrovic D.; Rivers E. L.; Underwood E.; Webb A.J Med Chem2024,
67 (11),
8962-8987.
DOI: 10.1021/acs.jmedchem.4c00215
Hit me with your best shot: Integrated hit discovery for the next generation of drug targetsAshraf S.N.; Blackwell J.H.; Holdgate G.A.; Lucas S.C.C.; Solovyeva A.; Storer R.I.; Whitehurst B.C.Drug Discov Today2024,
29 (10),
104143.
DOI: 10.1016/j.drudis.2024.104143
E-pharmacophore and deep learning based high throughput virtual screening for identification of CDPK1 inhibitors of Cryptosporidium parvumAsmare M.M.; Yun S.-I.Comput Biol Chem2024,
112,
108172.
DOI: 10.1016/j.compbiolchem.2024.108172
Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discoveryManen-Freixa L.; Antolin A.A.Expert Opin Drug Discov2024,
19 (9),
1043-1069.
DOI: 10.1080/17460441.2024.2376643
Enumerable Libraries and Accessible Chemical Space in Drug DiscoveryKnehans T.; Boyles N.A.; Bos P.H.Computational Drug Discovery: Methods and Applications2024,
315-336. DOI: 10.1002/9783527840748.ch14
Target-Aware Drug Activity Model: A Deep Learning Approach to Virtual HTSCzaplak S.; Frączek T.; Ambrogi F.; Kmicikiewicz M.; Wichard J.; Karawajczyk A.Artificial Neural Networks and Machine Learning (ICANN 2024)2024,
15025,
73-87.
DOI: 10.1007/978-3-031-72359-9_6
Streamlining Large Chemical Library Docking with Artificial Intelligence: the PyRMD2Dock ApproachRoggia M.; Natale B.; Amendola G.; Di Maro S.; Cosconati S.J Chem Inf Model2024,
64 (7),
2143-2149.
DOI: 10.1021/acs.jcim.3c00647
Transformers for Molecular Property Prediction: Lessons Learned from the Past Five YearsSultan A.; Sieg J.; Mathea M.; Volkamer A.J Chem Inf Model2024,
64 (16),
6259-6280.
DOI: 10.1021/acs.jcim.4c00747
Exploring Chemical Spaces in the Billion Range: Is Docking a Computational Alternative to DNA-Encoded Libraries?Mihalovits L.M.; Szalai T.V.; Bajusz D.; Keserű G.M.J Chem Inf Model2024,
in press.
DOI: 10.1021/acs.jcim.4c00803
High Performance Binding Affinity Prediction with a Transformer-Based Surrogate ModelVasan A.; Gokdemir O.; Brace A.; Ramanathan A.; Brettin T.; Stevens R.; Vishwanath V.2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW)2024,
571-580.
DOI: 10.1109/IPDPSW63119.2024.00114
Sulfamide instead of urea in Biginelli reaction: from black box to realityLyapunov A.Y.; Tarnovskiy A.V.; Boron S.Y.; Rusanov E.B.; Grabchuk G.P.; Volochnyuk D.M.; Ryabukhin S.V.Org Chem Front2024,
11 (8),
2155-2160.
DOI: 10.1039/d3qo01926h
Ultra-large scale virtual screening identifies a small molecule inhibitor of the Wnt transporter WntlessYu J.; Liao P.-J.; Keller T.H.; Cherian J.; Virshup D.M.; Xu W.iScience2024,
27 (8),
110454.
DOI: 10.1016/j.isci.2024.110454
Large-Scale Pretraining Improves Sample Efficiency of Active Learning-Based Virtual ScreeningCao Z.; Sciabola S.; Wang Y.J Chem Inf Model2024,
64 (6),
1882-1891.
DOI: 10.1021/acs.jcim.3c01938
Structure-based virtual screening of vast chemical space as a starting point for drug discoveryCarlsson J.; Luttens A.Curr Opin Struct Biol2024,
87,
102829.
DOI: 10.1016/j.sbi.2024.102829
In silico fragment-based discovery of CIB1-directed anti-tumor agents by FRASE-botAn Y.; Lim J.; Glavatskikh M.; Wang X.; Norris-Drouin J.; Hardy P.B.; Leisner T.M.; Pearce K.H.; Kireev D.Nat Commun2024,
15 (1),
5564.
DOI: 10.1038/s41467-024-49892-9
Discovery of the small molecular inhibitors against sclerostin loop3 as potential anti-osteoporosis agents by structural based virtual screening and molecular designYu S.; Huang W.; Zhang H.; Guo Y.; Zhang B.; Zhang G.; Lei J.Eur J Med Chem2024,
271,
116414.
DOI: 10.1016/j.ejmech.2024.116414
Perspectives on current approaches to virtual screening in drug discoveryMuegge I.; Bentzien J.; Ge Y.Expert Opin Drug Discov2024,
19 (10),
1173-1183.
DOI: 10.1080/17460441.2024.2390511
Docking and other computing tools in drug design against SARS-CoV-2Sulimov A.V.; Ilin I.S.; Tashchilova A.S.; Kondakova O.A.; Kutov D.C.; Sulimov V.B.SAR QSAR Environ Res2024,
35 (2),
91-136.
DOI: 10.1080/1062936X.2024.2306336
The Pan-Canadian Chemical Library: A Mechanism to Open Academic Chemistry to High-Throughput Virtual ScreeningBedart C.; Shimokura G.; West F.G.; Wood T.E.; Batey R.A.; Irwin J.J.; Schapira M.Sci Data2024,
11 (1),
597.
DOI: 10.1038/s41597-024-03443-5
The IMS Library: from IN-Stock to VirtualDjikic-Stojsic T.; Bret G.; Blond G.; Girard N.; Le Guen C.; Marsol C.; Schmitt M.; Schneider S.; Bihel F.; Bonnet D.; Gulea M.; Kellenberger E.ChemMedChem2024,
19 (20),
e202400381.
DOI: 10.1002/cmdc.202400381
Pocket Crafter: a 3D generative modeling based workflow for the rapid generation of hit molecules in drug discoveryShen L.; Fang J.; Liu L.; Yang F.; Jenkins J.L.; Kutchukian P.S.; Wang H.J Cheminform2024,
16 (1),
33.
DOI: 10.1186/s13321-024-00829-w
Structure-Based Ultra-Large Virtual ScreeningsGorgulla C. Computational Drug Discovery: Methods and Applications: Volumes 1-22024,
441-470. URL: 10.1002/9783527840748.ch19
ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug DiscoveryBou A.; Thomas M.; Dittert S.; Navarro C.; Majewski M.; Wang Y.; Patel S.; Tresadern G.; Ahmad M.; Moens V.; Sherman W.; Sciabola S.; De Fabritiis G.J Chem Inf Model2024,
64 (15),
5900-5911.
DOI: 10.1021/acs.jcim.4c00895
Shape-Aware Synthon Search (SASS) for Virtual Screening of Synthon-Based Chemical SpacesCheng C.; Beroza P.J Chem Inf Model2024,
64 (4),
1251-1260.
DOI: 10.1021/acs.jcim.3c01865
An artificial intelligence accelerated virtual screening platform for drug discoveryZhou G.; Rusnac D. V.; Park H.; Canzani D.; Nguyen H. M.; Stewart L.; Bush M. F.; Nguyen P. T.; Wulff H.; Yarov-Yarovoy V.; Zheng N.; DiMaio F.Nat Commun2024,
15 (1),
7761.
DOI: 10.1038/s41467-024-52061-7
In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulationsGutkin E.; Gusev F.; Gentile F.; Ban F.; Koby S.B.; Narangoda C.; Isayev O.; Cherkasov A.; Kurnikova M.G.Chem Sci2024,
15 (23),
8800-8812.
DOI: 10.1039/d3sc06880c
Enhanced Calculation of Property Distributions in Chemical Fragment SpacesLübbers J.; Lessel U.; Rarey M.J Chem Inf Model2024,
64 (6),
2008-2020.
DOI: 10.1021/acs.jcim.4c00147
A time-efficient computational binding affinity estimation protocol with utilization of limited experimental data: A case study for adenosine receptorCho I.; Moon S.; Cho K.-H.Bulletin of the Korean Chemical Society2024,
45 (9),
778-787.
DOI: 10.1002/bkcs.12890
Accelerating BRPF1b hit identification with BioPhysical and Active Learning Screening (BioPALS)Pal S.; Nare Z.; Rao V.A.; Smith B.O.; Morrison I.; Fitzgerald E.A.; Scott A.; Bingham M.J.; Pesnot T.ChemMedChem2024,
19 (6),
e202300590.
DOI: 10.1002/cmdc.202300590
DFRscore: Deep Learning-Based Scoring of Synthetic Complexity with Drug-Focused Retrosynthetic Analysis for High-Throughput Virtual ScreeningKim H.; Lee K.; Kim C.; Lim J.; Kim W.Y.J Chem Inf Model2024,
64 (7),
2432-2444.
DOI: 10.1021/acs.jcim.3c01134
Subpocket Similarity-Based Hit Identification for Challenging Targets: Application to the WDR Domain of LRRK2Eguida M.; Bret G.; Sindt F.; Li F.; Chau I.; Ackloo S.; Arrowsmith C.; Bolotokova A.; Ghiabi P.; Gibson E.; Halabelian L.; Houliston S.; Harding R.J.; Hutchinson A.; Loppnau P.; Perveen S.; Seitova A.; Zeng H.; Schapira M.; Rognan D.J Chem Inf Model2024,
64 (13),
5344-5355.
DOI: 10.1021/acs.jcim.4c00601
A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules?Kristiadi A.; Strieth-Kalthoff F.; Skreta M.; Poupart P.; Aspuru-Guzik A.; Pleiss G.Proceedings of the 41st International Conference on Machine Learning2024,
235,
25603-25622. URL: PMLR
Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approachesLanka G.; Banerjee S.; Adhikari N.; Ghosh B.Mol Divers2024,
in press. DOI: 10.1007/s11030-024-10837-5
AIDDISON: Empowering Drug Discovery with AI/ML and CADD Tools in a Secure, Web-Based SaaS PlatformRusinko A.; Rezaei M.; Friedrich L.; Buchstaller H.-P.; Kuhn D.; Ghogare A.J Chem Inf Model2024,
64 (1),
3-8. DOI: 10.1021/acs.jcim.3c01016
AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detectionClyde A.; Liu X.; Brettin T.; Yoo H.; Partin A.; Babuji Y.; Blaiszik B.; Mohd-Yusof J.; Merzky A.; Turilli M.; Jha S.; Ramanathan A.; Stevens R.Sci Rep2023,
13 (1),
2105. DOI: 10.1038/s41598-023-28785-9
Integrative Drug Discovery Platform: A Modular Approach for Efficient and Automated Virtual ScreeningLi T.; Xie L.; Zhang Z.; Li X.; Duan B.; Niu G.; Sun S.; Zhang F.; Zhang R.; Tan G.; Zhang C.2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)2023,
365-372. DOI: 10.1109/BIBM58861.2023.10385402
Targeting ROS production through inhibition of NADPH oxidasesReis J.; Gorgulla C.; Massari M.; Marchese S.; Valente S.; Noce B.; Basile L.; Torner R.; Cox H., 3rd; Viennet T.; Yang M. H.; Ronan M. M.; Rees M. G.; Roth J. A.; Capasso L.; Nebbioso A.; Altucci L.; Mai A.; Arthanari H.; Mattevi A.Nat Chem Biol2023,
19 (12),
1540-1550. DOI: 10.1038/s41589-023-01457-5
Discovery of novel A2AR antagonists through deep learning-based virtual screeningTang M.; Wen C.; Lin J.; Chen H.; Ran T.AI in Life Science Research2023,
3,
100058. DOI: 10.1016/j.ailsci.2023.100058
Targeting ion channels with ultra-large library screening for hit discoveryMelancon K.; Pliushcheuskaya P.; Meiler J.; Künze G.Front Mol Neurosci2023,
16,
1336004. DOI: 10.3389/fnmol.2023.1336004
Integrated molecular modeling and dynamics approaches revealed potential natural inhibitors of NF-κB transcription factor as breast cancer therapeuticsZubair M.; Khalil S.; Rasul I.; Nadeem H.; Noor F.; Ahmad S.; Alrumaihi F.; Allemailem K. S.; Almatroudi A.; Alshehri F. F.; Alshehri Z. S.J Biomol Struct Dyn2023,
41 (24),
14715-14729. DOI: 10.1080/07391102.2023.2214209
Therapeutic disruption of RAD52–ssDNA complexation via novel drug-like inhibitorsBhat D. S.; Malacaria E.; Biagi L. D.; Razzaghi M.; Honda M.; Hobbs K. F.; Hengel S. R.; Pichierri P.; Spies M. A.; Spies M.NAR Cancer2023,
5 (2),
zcad018. DOI: 10.1093/narcan/zcad018
Transferable Graph Neural Fingerprint Models for Quick Response to Future Bio-ThreatsChen W.; Ren Y.; Kagawa A.; Carbone M.R.; Chen S.Y.-C.; Qu X.; Yoo S.; Clyde A.; Ramanathan A.; Stevens R.L.; Van Dam H.J.J.; Lu D.2023 International Conference on Machine Learning and Applications (ICMLA)2023,
800-807. DOI: 10.1109/ICMLA58977.2023.00117
Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximationXiong Y.; Wang Y.; Wang Y.; Li C.; Yusong P.; Wu J.; Gu L.; Butch C.J.J Comput Aided Mol Des2023,
37 (11),
507-517. DOI: 10.1007/s10822-023-00523-3
De novo generated combinatorial library designJohansson S.V.; Haghir Chehreghani M.; Engkvist O.; Schliep A.Digital Discovery2023,
3 (1),
122-135. DOI: 10.1039/d3dd00095h
Discovery and development of small-molecule heparanase inhibitorsZhang Y.; Cui L.Bioorg Med Chem2023,
90,
117335. DOI: 10.1016/j.bmc.2023.117335
Galileo: Three-dimensional searching in large combinatorial fragment spaces on the example of pharmacophoresMeyenburg C.; Dolfus U.; Briem H.; Rarey M.J Comput Aided Mol Des2023,
37 (1),
1-16. DOI: 10.1007/s10822-022-00485-y
The Impact of Supervised Learning Methods in Ultralarge High-Throughput DockingCavasotto C.N.; Di Filippo J.I.J Chem Inf Model2023,
63 (8),
2267-2280. DOI: 10.1021/acs.jcim.2c01471
Deep learning workflow for the inverse design of molecules with specific optoelectronic propertiesYoo P.; Bhowmik D.; Mehta K.; Zhang P.; Liu F.; Lupo Pasini M.; Irle S.Sci Rep2023,
13 (1),
20031. DOI: 10.1038/s41598-023-45385-9
Epik: pKa and Protonation State Prediction through Machine LearningJohnston R. C.; Yao K.; Kaplan Z.; Chelliah M.; Leswing K.; Seekins S.; Watts S.; Calkins D.; Chief Elk J.; Jerome S. V.; Repasky M. P.; Shelley J. C.J Chem Theory Comput2023,
19 (8),
2380-2388. DOI: 10.1021/acs.jctc.3c00044
Keeping pace with the explosive growth of chemical libraries with structure-based virtual screeningKuan J.; Radaeva M.; Avenido A.; Cherkasov A.; Gentile F.WIREs Computational Molecular Science2023,
13 (6),
e1678. DOI: 10.1002/wcms.1678
Surely you are joking, Mr Docking!Gentile F.; Oprea T.I.; Tropsha A.; Cherkasov A.Chem Soc Rev2023,
52 (3),
872-878. DOI: 10.1039/d2cs00948j
Creation of targeted compound libraries based on 3D shape recognitionKyrylchuk A.; Kravets I.; Cherednichenko A.; Tararina V.; Kapeliukha A.; Dudenko D.; Protopopov M.Mol Divers2023,
27 (2),
939-949. DOI: 10.1007/s11030-022-10447-z
Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitorsLanka G.; Begum D.; Banerjee S.; Adhikari N.; P Y.; Ghosh B.Comput Biol Med2023,
166,
107481. DOI: 10.1016/j.compbiomed.2023.107481
Targeting in silico GPCR conformations with ultra-large library screening for hit discovery D.; Batebi H.; Ledwitch K.; Hildebrand P.W.; Meiler J. Trends Pharmacol Sci2023,
44 (3),
150-161. DOI: 10.1016/j.tips.2022.12.006
Design of the Global Health chemical diversity library v2 for screening against infectious diseasesWilson C.; Gardner J. M. F.; Gray D. W.; Baragana B.; Wyatt P. G.; Cookson A.; Thompson S.; Mendoza-Martinez C.; Bodkin M. J.; Gilbert I. H.; Tarver G. J.PLoS Negl Trop Dis2023,
17 (12),
e0011799. DOI: 10.1371/journal.pntd.0011799
Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical LibrariesSivula T.; Yetukuri L.; Kalliokoski T.; Käsnänen H.; Poso A.; Pöhner I. J Chem Inf Model2023,
63 (18),
5773-5783. DOI: 10.1021/acs.jcim.3c01239
Overlap of On-demand Ultra-large Combinatorial Spaces with On-the-shelf Drug-like LibrariesPerebyinis M.; Rognan D. Mol Inform2023,
42 (1),
e2200163. DOI: 10.1002/minf.202200163
Evaluating Scalable Supervised Learning for Synthesize-on-Demand Chemical LibrariesAlnammi M.; Liu S.; Ericksen S. S.; Ananiev G. E.; Voter A. F.; Guo S.; Keck J. L.; Hoffmann F. M.; Wildman S. A.; Gitter A.J Chem Inf Model2023,
63 (17),
5513-5528. DOI: 10.1021/acs.jcim.3c00912
Navigating large chemical spaces in early-phase drug discoveryKorn M.; Ehrt C.; Ruggiu F.; Gastreich M.; Rarey M. Curr Opin Struct Biol2023,
80,
102578. DOI: 10.1016/j.sbi.2023.102578
Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual ScreeningYu Y.; Cai C.; Wang J.; Bo Z.; Zhu Z.; Zheng H.J Chem Theory Comput2023,
19 (11),
3336-3345. DOI: 10.1021/acs.jctc.2c01145
Transferring a Molecular Foundation Model for Polymer Property PredictionsZhang P.; Kearney L.; Bhowmik D.; Fox Z.; Naskar A.K.; Gounley J.J Chem Inf Model2023,
63 (24),
7689-7698. DOI: 10.1021/acs.jcim.3c01650
Integrated data-driven and experimental approaches to accelerate lead optimization targeting SARS-CoV-2 main proteaseVarikoti R.A.; Schultz K.J.; Kombala C.J.; Kruel A.; Brandvold K.R.; Zhou M.; Kumar N. J Comput Aided Mol Des2023,
37 (8),
339-355. DOI: 10.1007/s10822-023-00509-1
Predicting the Likelihood of Molecules to Act as Modulators of Protein-Protein InteractionsWolk O.; Goldblum A. J Chem Inf Model2023,
63 (1),
126-137. DOI: 10.1021/acs.jcim.2c00920
Adaptive language model training for molecular designBlanchard A.E.; Bhowmik D.; Fox Z.; Gounley J.; Glaser J.; Akpa B.S.; Irle S.J Cheminform2023,
15 (1),
59. DOI: 10.1186/s13321-023-00719-7
CNN Use and Performance in Virtual ScreeningChandegra B.; Prajapati P.; Prajapati J.Artificial Intelligence in Bioinformatics and Chemoinformatics2023,
189-207. DOI: 10.1201/9781003353768-10
Computational approaches streamlining drug discoverySadybekov A.V.; Katritch V. Nature2023,
616 (7958),
673-685. DOI: 10.1038/s41586-023-05905-z
Managing the Drug Discovery Process (Second Edition)Miller S.; Moos W.; Munk B.; Munk S.; Hart C.; Spellmeyer D.2023,
1-639. DOI: 10.1016/C2020-0-01031-5
Inhibiting a promiscuous GPCR: iterative discovery of bitter taste receptor ligandsFierro F.; Peri L.; Hübner H.; Tabor-Schkade A.; Waterloo L.; Löber S.; Pfeiffer T.; Weikert D.; Dingjan T.; Margulis E.; Gmeiner P.; Niv M.Y.Cellular and Molecular Life Sciences2023,
80 (4),
114. DOI: 10.1007/s00018-023-04765-0
Fast Substructure Search in Combinatorial Library SpacesLiphardt T.; Sander T. J Chem Inf Model2023,
63 (16),
5133-5141. DOI: 10.1021/acs.jcim.3c00290
Recent Developments in Ultralarge and Structure-Based Virtual Screening ApproachesGorgulla C. Annual Review of Biomedical Data Science2023,
6,
229-258. DOI: 10.1146/annurev-biodatasci-020222-025013
Computational Chemistry for the Identification of Lead Compounds for Radiotracer DevelopmentHsieh C.-J.; Giannakoulias S.; Petersson E.J.; Mach R.H. Pharmaceuticals2023,
16 (2),
317. DOI: 10.3390/ph16020317
Shape-Based Virtual Screening of a Billion-Compound Library Identifies Mycobacterial Lipoamide Dehydrogenase InhibitorsMichino M.; Beautrait A.; Boyles N.A.; Nadupalli A.; Dementiev A.; Sun S.; Ginn J.; Baxt L.; Suto R.; Bryk R.; Jerome S.V.; Huggins D.J.; Vendome J. ACS Bio and Med Chem Au2023,
3 (6),
507-515. DOI: 10.1021/acsbiomedchemau.3c00046
Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous systemGautam V.; Gaurav A.; Masand N.; Lee V.S.; Patil V.M. Mol Divers2023,
27 (2),
959-985. DOI: 10.1007/s11030-022-10489-3
Improved decision making with similarity based machine learning: applications in chemistryLemm D.; Falk von Rudorff G.; Anatole von Lilienfeld O. Machine Learning: Science and Technology2023,
4 (4),
045043. DOI: 10.1088/2632-2153/ad0fa3
DIY Virtual Chemical Libraries - Novel Starting Points for Drug DiscoveryTakács G.; Havasi D.; Sándor M.; Dohánics Z.; Balogh G.T.; Kiss R. ACS Med Chem Lett2023,
14 (9),
1188-1197. DOI: 10.1021/acsmedchemlett.3c00146
Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries for Drug DiscoveryZabolotna Y.; Bonachera F.; Horvath D.; Lin A.; Marcou G.; Klimchuk O.; Varnek A. J Chem Inf Model2022,
62 (18),
4537-4548. DOI: 10.1021/acs.jcim.2c00509
Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer Chemical Research LaboratoryBeck H.; Härter M.; Haß B.; Schmeck C.; Baerfacker L.Drug Discov Today2022,
27 (6),
1560-1574. DOI: 10.1016/j.drudis.2022.02.015
A multi-reference poly-conformational method for in silico design, optimization, and repositioning of pharmaceutical compounds illustrated for selected SARSCoV-2 ligandsAlexandrov V.; Kirpich A.; Kantidze O.; Gankin Y.PeerJ2022,
10,
e14252. DOI: 10.7717/peerj.14252
Fully Automated Creation of Virtual Chemical Fragment Spaces Using the Open-Source Library OpenChemLibWahl J.; Sander T.J Chem Inf Model2022,
62 (9),
2202-2211. DOI: 10.1021/acs.jcim.1c01041
The Ukrainian Factor in Early-Stage Drug Discovery in the Context of Russian Invasion: The Case of Enamine LtdKondratov I.S.; Moroz Y.S.; Grygorenko O.O.; Tolmachev A.A.ACS Med Chem Lett2022,
13 (7),
992-996. DOI: 10.1021/acsmedchemlett.2c00211
Accelerators for Classical Molecular Dynamics Simulations of BiomoleculesJones D.; Allen J.E.; Yang Y.; Drew Bennett W.F.; Gokhale M.; Moshiri N.; Rosing T.S.J Chem Theory Comput2022,
18 (7),
4047-4069. DOI: 10.1021/acs.jctc.1c01214
Challenges for chemistry in Ukraine after the war: Ukrainian science requires rebuilding and supportKondratov I.S.; Moroz Y.S.; Gorgulla C.; Grygorenko O.O.; Komarov I.V.; Wagner G.; Tolmachev A.A.Proc Natl Acad Sci U S A2022,
119 (50),
e2210686119. DOI: 10.1073/pnas.2210686119
A multilevel generative framework with hierarchical self-contrasting for bias control and transparency in structure-based ligand designChan L.; Kumar R.; Verdonk M.; Poelking C.Nature Machine Intelligence2022,
4 (12),
1130-1142. DOI: 10.1038/s42256-022-00564-7
Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment SpacesBellmann L.; Klein R.; Rarey M.J Chem Inf Model2022,
62 (11),
2800-2810. DOI: 10.1021/acs.jcim.2c00334
Self-Focusing Virtual Screening with Active Design Space PruningGraff D.E.; Aldeghi M.; Morrone J.A.; Jordan K.E.; Pyzer-Knapp E.O.; Coley C.W.J Chem Inf Model2022,
62 (16),
3854-3862. DOI: 10.1021/acs.jcim.2c00554
Rings in Clinical Trials and Drugs: Present and FutureShearer J.; Castro J.L.; Lawson A.D.G.; MacCoss M.; Taylor R.D.J Med Chem2022,
65 (13),
8699-8712. DOI: 10.1021/acs.jmedchem.2c00473
Magnet for the Needle in Haystack: "crystal Structure First" Fragment Hits Unlock Active Chemical Matter Using Targeted Exploration of Vast Chemical SpacesMuller J.; Klein R.; Tarkhanova O.; Gryniukova A.; Borysko P.; Merkl S.; Ruf M.; Neumann A.; Gastreich M.; Moroz Y. S.; Klebe G.; Glinca S.J Med Chem2022,
65 (23),
15663-15678. DOI: 10.1021/acs.jmedchem.2c00813
Artificial Intelligence in Compound DesignGrebner C.; Matter H.; Hessler G.Artificial Intelligence in Drug Design2022,
2390,
349-382. DOI: 10.1007/978-1-0716-1787-8_15
Maximizing the integration of virtual and experimental screening in hit discoveryBajusz D.; Keserű G.M.Expert Opin Drug Discov2022,
17 (6),
629-640. DOI: 10.1080/17460441.2022.2085685
Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease InhibitorGlaser J.; Sedova A.; Galanie S.; Kneller D. W.; Davidson R. B.; Maradzike E.; Del Galdo S.; Labbe A.; Hsu D. J.; Agarwal R.; Bykov D.; Tharrington A.; Parks J. M.; Smith D. M. A.; Daidone I.; Coates L.; Kovalevsky A.; Smith J. C.ACS Pharmacol Transl Sci2022,
5 (4),
255-265. DOI: 10.1021/acsptsci.2c00026
Identification of potential SARS-CoV-2 Mpro inhibitors integrating molecular docking and water thermodynamicsSobhia M.E.; Ghosh K.; Sivangula S.; Kumar S.; Singh H.J Biomol Struct Dyn2022,
40 (11),
5079-5089. DOI: 10.1080/07391102.2020.1867642
Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep dockingGentile F.; Yaacoub J.C.; Gleave J.; Fernandez M.; Ton A.-T.; Ban F.; Stern A.; Cherkasov A.Nature Protocols2022,
17 (3),
672-697. DOI: 10.1038/s41596-021-00659-2
Comparison of Combinatorial Fragment Spaces and Its Application to Ultralarge Make-on-Demand Compound CatalogsBellmann L.; Penner P.; Gastreich M.; Rarey M.J Chem Inf Model2022,
62 (3),
553-566. DOI: 10.1021/acs.jcim.1c01378
Benchmarking ensemble docking methods in D3R Grand Challenge 4Gan J.L.; Kumar D.; Chen C.; Taylor B.C.; Jagger B.R.; Amaro R.E.; Lee C.T.J Comput Aided Mol Des2022,
36 (2),
87-99. DOI: 10.1007/s10822-021-00433-2
Ultrahigh Throughput Protein–Ligand Docking with Deep LearningClyde A.Artificial Intelligence in Drug Design2022,
2390,
301-319. DOI: 10.1007/978-1-0716-1787-8_13
Synthon-based ligand discovery in virtual libraries of over 11 billion compoundsSadybekov A. A.; Sadybekov A. V.; Liu Y.; Iliopoulos-Tsoutsouvas C.; Huang X. P.; Pickett J.; Houser B.; Patel N.; Tran N. K.; Tong F.; Zvonok N.; Jain M. K.; Savych O.; Radchenko D. S.; Nikas S. P.; Petasis N. A.; Moroz Y. S.; Roth B. L.; Makriyannis A.; Katritch V.Nature2022,
601 (7893),
452-459. DOI: 10.1038/s41586-021-04220-9
A Review on Parallel Virtual Screening Softwares for High-Performance ComputersMurugan N.A.; Podobas A.; Gadioli D.; Vitali E.; Palermo G.; Markidis S.Pharmaceuticals2022,
15 (1),
63. DOI: 10.3390/ph15010063
Identification of novel protein kinase C-βII inhibitors: virtual screening, molecular docking and molecular dynamics simulation studiesSanapalli B.K.R.; Yele V.; Baldaniya L.; Karri V.V.S.R.J Mol Model2022,
28 (5),
117. DOI: 10.1007/s00894-022-05104-z
Computational Workflow for Accelerated Molecular Design Using Quantum Chemical Simulations and Deep Learning ModelsBlanchard A.E.; Zhang P.; Bhowmik D.; Mehta K.; Gounley J.; Reeve S.T.; Irle S.; Pasini M.L.Smoky Mountains Computational Sciences and Engineering Conferenc, SMC 20222022,
3-19. DOI: 10.1007/978-3-031-23606-8_1
Molecular docking-based computational platform for high-throughput virtual screeningZhang B.; Li H.; Yu K.; Jin Z.CCF Trans High Perform Comput2022,
4 (1),
63-74. DOI: 10.1007/s42514-021-00086-5
Call for Papers for the Special Issue: From Reaction Informatics to Chemical SpaceRarey M.; Nicklaus M.C.; Warr W.J Chem Inf Model2021,
61 (4),
1531-1532. DOI: 10.1021/acs.jcim.1c00321
Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological dataBender A.; Cortes-Ciriano I.Drug Discov Today2021,
26 (4),
1040-1052. DOI: 10.1016/j.drudis.2020.11.037
Drug discovery for mycobacterium tuberculosis using structure-based computer-aided drug design approachEjalonibu M.A.; Ogundare S.A.; Elrashedy A.A.; Ejalonibu M.A.; Lawal M.M.; Mhlongo N.N.; Kumalo H.M.Int J Mol Sci2021,
22 (24),
13259. DOI: 10.3390/ijms222413259
Enabling rapid COVID-19 small molecule drug design through scalable deep learning of generative modelsJacobs S. A.; Moon T.; McLoughlin K.; Jones D.; Hysom D.; Ahn D. H.; Gyllenhaal J.; Watson P.; Lightstone F. C.; Allen J. E.; Karlin I.; Van Essen B.IJHPCA2021,
35 (5),
469-482. DOI: 10.1177/10943420211010930
Enamine Ltd.: The Science and Business of Organic Chemistry and BeyondGrygorenko O.O.Eur J Org Chem2021,
2021 (47),
6474-6477. DOI: 10.1002/ejoc.202101210
Discovery of Small-Molecule Inhibitors of SARS-CoV-2 Proteins Using a Computational and Experimental PipelineLau E. Y.; Negrete O. A.; Bennett W. F. D.; Bennion B. J.; Borucki M.; Bourguet F.; Epstein A.; Franco M.; Harmon B.; He S.; Jones D.; Kim H.; Kirshner D.; Lao V.; Lo J.; McLoughlin K.; Mosesso R.; Murugesh D. K.; Saada E. A.; Segelke B.; Stefan M. A.; Stevenson G. A.; Torres M. W.; Weilhammer D. R.; Wong S.; Yang Y.; Zemla A.; Zhang X.; Zhu F.; Allen J. E.; Lightstone F. C.Front Mol Biosci2021,
8,
678701. DOI: 10.3389/fmolb.2021.678701
Best Practices for Docking-Based Virtual ScreeningNeves B.J.; Mottin M.; Moreira-Filho J.T.; Sousa B.K.P.; Mendonca S.S.; Andrade C.H.Molecular Docking for Computer-Aided Drug Design2021,
75-98. DOI: 10.1016/B978-0-12-822312-3.00001-1
Deep learning in virtual screening: Recent applications and developmentsKimber T.B.; Chen Y.; Volkamer A.Int J Mol Sci2021,
22 (9),
4435. DOI: 10.3390/ijms22094435
C@PA: Computer-Aided Pattern Analysis to Predict Multitarget ABC Transporter InhibitorsNamasivayam V.; Silbermann K.; Wiese M.; Pahnke J.; Stefan S.M.J Med Chem2021,
64 (6),
3350-3366. DOI: 10.1021/acs.jmedchem.0c02199
Accelerating high-throughput virtual screening through molecular pool-based active learningGraff D.E.; Shakhnovich E.I.; Coley C.W.Chem Sci2021,
12 (22),
7866-7881. DOI: 10.1039/d0sc06805e
Web-Based Quantitative Structure–Activity Relationship Resources Facilitate Effective Drug DiscoveryWang Y.-L.; Li J.-Y.; Shi X.-X.; Wang Z.; Hao G.-F.; Yang G.-F.Top Curr Chem (Cham)2021,
379 (6),
37. DOI: 10.1007/s41061-021-00349-3
Challenges Encountered Applying Equilibrium and Nonequilibrium Binding Free Energy CalculationsBaumann H.M.; Gapsys V.; De Groot B.L.; Mobley D.L.J Phys Chem B2021,
125 (17),
4241-4261. DOI: 10.1021/acs.jpcb.0c10263
From computer-aided drug discovery to computer-driven drug discoveryFrye L.; Bhat S.; Akinsanya K.; Abel R.Drug Discov Today Technol2021,
39,
111-117. DOI: 10.1016/j.ddtec.2021.08.001
Structure-based drug repurposing against COVID-19 and emerging infectious diseases: Methods, resources and discoveriesMasoudi-Sobhanzadeh Y.; Salemi A.; Pourseif M.M.; Jafari B.; Omidi Y.; Masoudi-Nejad A.Briefings in Bioinformatics2021,
22 (6),
bbab113. DOI: 10.1093/bib/bbab113
Design concepts for DNA-encoded library synthesisZhang Y.; Clark M.A.Bioorg Med Chem2021,
41,
116189. DOI: 10.1016/j.bmc.2021.116189
Prediction of chemical compounds properties using a deep learning modelGalushka M.; Swain C.; Browne F.; Mulvenna M.D.; Bond R.; Gray D.Neural Comput & Applic2021,
33 (20),
13345-13366. DOI: 10.1007/s00521-021-05961-4
Discovery of Novel BRD4 Ligand Scaffolds by Automated Navigation of the Fragment Chemical SpacePiticchio S. G.; Martinez-Cartro M.; Scaffidi S.; Rachman M.; Rodriguez-Arevalo S.; Sanchez-Arfelis A.; Escolano C.; Picaud S.; Krojer T.; Filippakopoulos P.; von Delft F.; Galdeano C.; Barril X.J Med Chem2021,
64 (24),
17887-17900. DOI: 10.1021/acs.jmedchem.1c01108
Topological Similarity Search in Large Combinatorial Fragment SpacesBellmann L.; Penner P.; Rarey M.J Chem Inf Model2021,
61 (1),
238-251. DOI: 10.1021/acs.jcim.0c00850
Monitoring Large Scale Supercomputers: A Case Study with the Lassen SupercomputerPatki T.; Bertsch A.; Karlin I.; Ahn D.H.; Van Essen B.; Rountree B.; De Supinski B.R.; Besaw N.2021 IEEE International Conference on Cluster Computing (CLUSTER)2021,
468-480. DOI: 10.1109/Cluster48925.2021.00057
Generative Models for de Novo Drug DesignTong X.; Liu X.; Tan X.; Li X.; Jiang J.; Xiong Z.; Xu T.; Jiang H.; Qiao N.; Zheng M.J Med Chem2021,
64 (19),
14011-14027. DOI: 10.1021/acs.jmedchem.1c00927
Chemical Topic Modeling - An Unsupervised Approach Originating from Text-mining to Organize Chemical DataSchneider N.; Fechner N.; Stiefl N.; Landrum G.A.Artificial Intelligence in Drug Discovery2021,
17-44. DOI: 10.1039/9781788016841-00015
Structure-based virtual screening of ultra-large library yields potent antagonists for a lipid gpcrSadybekov A. A.; Brouillette R. L.; Marin E.; Sadybekov A. V.; Luginina A.; Gusach A.; Mishin A.; Besserer-Offroy E.; Longpre J. M.; Borshchevskiy V.; Cherezov V.; Sarret P.; Katritch V.Biomolecules2020,
10 (12),
1-15. DOI: 10.3390/biom10121634
BRADSHAW: a system for automated molecular designGreen D. V. S.; Pickett S.; Luscombe C.; Senger S.; Marcus D.; Meslamani J.; Brett D.; Powell A.; Masson J.J Comput Aided Mol Des2020,
34 (7),
747-765. DOI: 10.1007/s10822-019-00234-8
Adapting CHMTRN (CHeMistry TRaNslator) for a New UseJudson P.N.; Ihlenfeldt W.-D.; Patel H.; Delannée V.; Tarasova N.; Nicklaus M.C.J Chem Inf Model2020,
60 (7),
3336-3341. DOI: 10.1021/acs.jcim.0c00448
Computational Approaches to Identify a Hidden Pharmacological Potential in Large Chemical LibrariesDruzhilovskiy D.S.; Stolbov L.A.; Savosina P.I.; Pogodin P.V.; Filimonov D.A.; Veselovsky A.V.; Stefanisko K.; Tarasova N.I.; Nicklaus M.C.; Poroikov V.V.Supercomputing Frontiers and Innovations2020,
7 (3),
57-76. DOI: 10.14529/jsfi200306
Generating Multibillion Chemical Space of Readily Accessible Screening CompoundsGrygorenko O.O.; Radchenko D.S.; Dziuba I.; Chuprina A.; Gubina K.E.; Moroz Y.S.iScience2020,
23 (11),
101681. DOI: 10.1016/j.isci.2020.101681
Computer-aided estimation of biological activity profiles of drug-like compounds taking into account their metabolism in human bodyFilimonov D.A.; Rudik A.V.; Dmitriev A.V.; Poroikov V.V.Int J Mol Sci2020,
21 (20),
1-13. DOI: 10.3390/ijms21207492
Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19Acharya A.; Agarwal R.; Baker M. B.; Baudry J.; Bhowmik D.; Boehm S.; Byler K. G.; Chen S. Y.; Coates L.; Cooper C. J.; Demerdash O.; Daidone I.; Eblen J. D.; Ellingson S.; Forli S.; Glaser J.; Gumbart J. C.; Gunnels J.; Hernandez O.; Irle S.; Kneller D. W.; Kovalevsky A.; Larkin J.; Lawrence T. J.; LeGrand S.; Liu S. H.; Mitchell J. C.; Park G.; Parks J. M.; Pavlova A.; Petridis L.; Poole D.; Pouchard L.; Ramanathan A.; Rogers D. M.; Santos-Martins D.; Scheinberg A.; Sedova A.; Shen Y.; Smith J. C.; Smith M. D.; Soto C.; Tsaris A.; Thavappiragasam M.; Tillack A. F.; Vermaas J. V.; Vuong V. Q.; Yin J.; Yoo S.; Zahran M.; Zanetti-Polzi L.J Chem Inf Model2020,
60 (12),
5832-5852. DOI: 10.1021/acs.jcim.0c01010
Characterizing human odorant signals: Insights from insect semiochemistry and in silico modellingRadadiya A.; Pickett J.A.Philos Trans R Soc Lond B Biol Sci2020,
375 (1800),
20190263. DOI: 10.1098/rstb.2019.0263
Chemoinformatics-based enumeration of chemical libraries: a tutorialSaldívar-González F.I.; Huerta-García C.S.; Medina-Franco J.L.J Cheminform2020,
12 (1),
64. DOI: 10.1186/s13321-020-00466-z
In silico strategies in tuberculosis drug discoveryMacalino S.J.Y.; Billones J.B.; Organo V.G.; Carrillo M.C.O.Molecules2020,
25 (3),
665. DOI: 10.3390/molecules25030665
A Fragment Library of Natural Products and its Comparative Chemoinformatic CharacterizationChávez-Hernández A.L.; Sánchez-Cruz N.; Medina-Franco J.L.Mol Inform2020,
39 (11),
e2000050. DOI: 10.1002/minf.202000050
Autonomous Discovery in the Chem Scis Part II: OutlookColey C.W.; Eyke N.S.; Jensen K.F.Angew Chem Int Ed Engl2020,
59 (52),
23414-23436. DOI: 10.1002/anie.201909989
Electrochemical Scaled-up Synthesis of Cyclic Enecarbamates as Starting Materials for Medicinal Chemistry Relevant Building BocksTereshchenko O. D.; Perebiynis M. Y.; Knysh I. V.; Vasylets O. V.; Sorochenko A. A.; Slobodyanyuk E. Y.; Rusanov E. B.; Borysov O. V.; Kolotilov S. V.; Ryabukhin S. V.; Volochnyuk D. M.Advanced Synthesis & Catalysis2020,
362 (15),
3229-3242. DOI: 10.1002/adsc.202000450
ZINC20 - A Free Ultralarge-Scale Chemical Database for Ligand DiscoveryIrwin J. J.; Tang K. G.; Young J.; Dandarchuluun C.; Wong B. R.; Khurelbaatar M.; Moroz Y. S.; Mayfield J.; Sayle R. A.J Chem Inf Model2020,
60 (12),
6065-6073. DOI: 10.1021/acs.jcim.0c00675
SAVI, in silico generation of billions of easily synthesizable compounds through expert-system type rulesPatel H.; Ihlenfeldt W. D.; Judson P. N.; Moroz Y. S.; Pevzner Y.; Peach M. L.; Delannee V.; Tarasova N. I.; Nicklaus M. C.Sci Data2020,
7 (1),
384. DOI: 10.1038/s41597-020-00727-4
Automated de Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn?Grebner C.; Matter H.; Plowright A.T.; Hessler G.J Med Chem2020,
63 (16),
8809-8823. DOI: 10.1021/acs.jmedchem.9b02044
Can easy chemistry produce complex, diverse, and novel molecules?Tomberg A.; Boström J.Drug Discov Today2020,
25 (12),
2174-2181. DOI: 10.1016/j.drudis.2020.09.027
Autonomous Discovery in the Chem Scis Part I: ProgressColey C.W.; Eyke N.S.; Jensen K.F.Angew Chem Int Ed Engl2020,
59 (51),
22858-22893. DOI: 10.1002/anie.201909987
Multi-objective biofilm algorithm (MOBifi) for de novo drug design with special focus to anti-diabetic drugsDevi R.V.; Siva Sathya S.; Coumar M.S.Applied Soft Computing2020,
96,
106655. DOI: 10.1016/j.asoc.2020.106655
Screening of metal ions and organocatalysts on solid support-coupled DNA oligonucleotides guides design of DNA-encoded reactionsPotowski M.; Losch F.; Wünnemann E.; Dahmen J.K.; Chines S.; Brunschweiger A.Chem Sci2019,
10 (45),
10481-10492. DOI: 10.1039/c9sc04708e
SAR by space: Enriching hit sets from the chemical spaceKlingler F. M.; Gastreich M.; Grygorenko O. O.; Savych O.; Borysko P.; Griniukova A.; Gubina K. E.; Lemmen C.; Moroz Y. S.Molecules2019,
24 (17),
3096. DOI: 10.3390/molecules24173096
Comparison of Large Chemical SpacesLessel U.; Lemmen C.ACS Med Chem Lett2019,
10 (10),
1504-1510. DOI: 10.1021/acsmedchemlett.9b00331
Using Machine Learning to Inform Decisions in Drug Discovery: An Industry PerspectiveGreen D.V.S. ACS Symposium Series2019,
1326,
81-101. DOI: 10.1021/bk-2019-1326.ch005
Prediction and Experimental Confirmation of Novel Peripheral Cannabinoid-1 Receptor AntagonistsEl-Atawneh S.; Hirsch S.; Hadar R.; Tam J.; Goldblum A.J Chem Inf Model2019,
59 (9),
3996-4006. DOI: 10.1021/acs.jcim.9b00577
Recent applications of machine learning in medicinal chemistryPanteleev J.; Gao H.; Jia L.Bioorg Med Chem Letters2018,
28 (17),
2807-2815. DOI: 10.1016/j.bmcl.2018.06.046
Practical aspects of machine learning for the design-synthesis-purify-assay workflowSirockin F.; Stiefl N.Chimia2018,
72 (9),
648-649. DOI: 10.2533/chimia.2018.648
(Chlorosulfonyl)benzenesulfonyl Fluorides - Versatile Building Blocks for Combinatorial Chemistry: Design, Synthesis and Evaluation of a Covalent Inhibitor LibraryTolmachova K. A.; Moroz Y. S.; Konovets A.; Platonov M. O.; Vasylchenko O. V.; Borysko P.; Zozulya S.; Gryniukova A.; Bogolubsky A. V.; Pipko S.; Mykhailiuk P. K.; Brovarets V. S.; Grygorenko O. O.ACS Comb Sci2018,
20 (11),
672-680. DOI: 10.1021/acscombsci.8b00130
Facile One-Pot Parallel Synthesis of 3-Amino-1,2,4-triazolesBogolyubsky A. V.; Savych O.; Zhemera A. V.; Pipko S. E.; Grishchenko A. V.; Konovets A. I.; Doroshchuk R. O.; Khomenko D. N.; Brovarets V. S.; Moroz Y. S.; Vybornyi M.ACS Comb Sci2018,
20 (7),
461-466.
DOI: 10.1021/acscombsci.8b00060
Straightforward hit identification approach in fragment-based discovery of bromodomain-containing protein 4 (BRD4) inhibitorsBorysko P.; Moroz Y. S.; Vasylchenko O. V.; Hurmach V. V.; Starodubtseva A.; Stefanishena N.; Nesteruk K.; Zozulya S.; Kondratov I. S.; Grygorenko O. O.Bioorg Med Chem2018,
26 (12),
3399-3405. DOI: 10.1016/j.bmc.2018.05.010
An Old Story in the Parallel Synthesis World: An Approach to Hydantoin LibrariesBogolubsky A. V.; Moroz Y. S.; Savych O.; Pipko S.; Konovets A.; Platonov M. O.; Vasylchenko O. V.; Hurmach V. V.; Grygorenko O. O.ACS Comb Sci2018,
20 (1),
35-43.
DOI: 10.1021/acscombsci.7b00163
Design, Virtual Screening, and Synthesis of Antagonists of αiIbβ3 as Antiplatelet AgentsPolishchuk P. G.; Samoylenko G. V.; Khristova T. M.; Krysko O. L.; Kabanova T. A.; Kabanov V. M.; Kornylov A. Y.; Klimchuk O.; Langer T.; Andronati S. A.; Kuz'min V. E.; Krysko A. A.; Varnek A.J Med Chem2015,
58 (19),
7681-7694.
DOI: 10.1021/acs.jmedchem.5b00865
Approach to the library of fused pyridine-4-carboxylic acids by combes-type reaction of acyl pyruvates and electron-rich amino heterocyclesVolochnyuk D. M.; Ryabukhin S. V.; Plaskon A. S.; Dmytriv Y. V.; Grygorenko O. O.; Mykhailiuk P. K.; Krotko D. G.; Pushechnikov A.; Tolmachev A. A.J Comb Chem2010,
12 (4),
510-517.
DOI: 10.1021/cc100040q