Building Blocks Catalog

300 Thousand compounds in stock

Original and unique

Make-on-demand
Building Blocks

1B novel building blocks

Reliable supply

Custom Synthesis

Over 650 highly skillful chemists

Unique synthesis technologies

Library Synthesis

48B Billion REAL compounds and

Custom Library Synthesis

FTE Chemistry Support

On site access to all Enamine stock BB’s

Highly flexible arrangements

2 000 new building blocks are synthesized monthly. Here is an important update to our MedChem Highlights from March 2024

Recent News

  • 11 April 2024   Press Release

    Metrion Biosciences enhances High Throughput Screening services with access ...

    Cambridge, UK and Kyiv, Ukraine, 11 April 2024: Metrion Biosciences Limited (“Metrion”), the specialist ion channel and cardiac safety screening contract research organisation (CRO) and drug discovery company, and Enamine Ltd (“Enamine”), the global leader in supplying small molecules and early drug discovery services, announced that Metrion has enhanced its High Throughput Screening (HTS) services with the addition of access to Enamine’s compound libraries.

  • 27 March 2024   Press Release

    Enamine Announces Expansion of Its Library Synthesis Capabilities

    March, 2024, Kyiv, Ukraine. Enamine Ltd, the global leader in supplying small molecules and early drug discovery services, announces the expansion of its library synthesis capabilities with a focus on Enamine REAL compounds to further support the growing demands of agricultural and pharmaceutical companies, research institutes, and drug discovery centers.

  • 01 March 2024   News

    Enamine and Genez International Announce Strategic Collaboration to Launch ...

    We are excited to announce a strategic collaboration between Enamine, the world's leading provider of chemical building blocks, compound libraries, and biology services, and Genez International, a prominent enterprise with 15 years of experience in cross-border supply management, biopharmaceutical research and development, semiconductor equipment, and high-definition digital imaging systems.

Upcoming events

Carbidopa

Phenelzine

Hydralazine

An interesting application of hydrazines in the design of potential drug candidates evolved with the idea of amino acids and peptides modification. If the Ca atom of an amino acid residue in a peptide is replaced by Nitrogen, an aza peptide is obtained.

Peptide Aza peptide

The potential of peptide therapeutics has gained increased attention recently due to the potency, specificity and low toxicity of peptide drugs. Modified peptides (in particular, aza peptides) are also attracting growing interest as they exhibit higher biodegradation stability comparing to parent peptides. Some of aza peptide drug candidates that reached preclinical phase are shown below.

Other acyl derivatives of hydrazines are also found among drugs or drug candidates, e. g. diuretic Clopamide (Brinaldrix®) and antidepressant Isocarboxazid (Marplan®).

Celecoxib

Isocarboxazid

Another use of hydrazines in drug design is related to the concept of “Click Chemistry” introduced by H. C. Kolb, M. G. Finn and K. B. Shaprless. The main idea behind the “Click Chemistry” is the use of mild, highly reliable, selective and powerful reactions for the rapid synthesis of large arrays of chemical compounds. One of the reactions identified to be suitable for Click Chemistry is condensation of Hydrazines with carbonyl compounds. The most important particular case of these reactions is heterocyclic compounds (e.g. Pyrazoles, Piridazines and 1,2,4-Triazoles) formation from dicarbonyl compounds. Many examples of Pyrazole-containing drugs can be found including anti-inflammatory drug Celecoxib (Celebrex® or Onsenal®) and Regadenosin (Lexiscan®), which is used as stress agent in radionuclide myocardial perfusion imaging.

Celecoxib

Regadenosin

Enamine offers several diverse subsets of Hydrazine building blocks including monosubsituted (both aliphatic and aromatic) and disubstituted hydrazines, cyclic hydrazines, acyl and sulfonyl hydrazines. Procedures for the synthesis of hydrazines were elaborated, and their scope and limitations were established. The methods depicted in the scheme below allow obtaining a large diversity of hydrazine building blocks at 1–10 g scale; novel compounds of the requested structure can be obtained in 4–6 weeks. Scale-up to 1 kg can be performed upon request. Moreover, protected derivatives at any of the Nitrogen atoms of the hydrazine moiety can be obtained. Applying the Mitsunobu conditions to chiral alcohols as starting materials gives a possibility for the synthesis of enantiopure chiral alkyl hydrazines. Further in-house modification of hydrazine building blocks is also possible.

Some examples of the hydrazines are shown below.

Monosubstituted Aliphatic Hydrazines

Monosubstituted Aromatic Hydrazines

Disubstituted Hydrazines

Cyclic Hydrazines

Acyl and Sulfonyl Hydrazines

FOLLOW US