Building Blocks Catalog

300 Thousand compounds in stock

Original and unique

Make-on-demand
Building Blocks

1B novel building blocks

Reliable supply

Custom Synthesis

Over 650 highly skillful chemists

Unique synthesis technologies

Library Synthesis

48B Billion REAL compounds and

Custom Library Synthesis

FTE Chemistry Support

On site access to all Enamine stock BB’s

Highly flexible arrangements

2 000 new building blocks are synthesized monthly. Here is an important update to our MedChem Highlights from March 2024

Recent News

  • 11 April 2024   Press Release

    Metrion Biosciences enhances High Throughput Screening services with access ...

    Cambridge, UK and Kyiv, Ukraine, 11 April 2024: Metrion Biosciences Limited (“Metrion”), the specialist ion channel and cardiac safety screening contract research organisation (CRO) and drug discovery company, and Enamine Ltd (“Enamine”), the global leader in supplying small molecules and early drug discovery services, announced that Metrion has enhanced its High Throughput Screening (HTS) services with the addition of access to Enamine’s compound libraries.

  • 27 March 2024   Press Release

    Enamine Announces Expansion of Its Library Synthesis Capabilities

    March, 2024, Kyiv, Ukraine. Enamine Ltd, the global leader in supplying small molecules and early drug discovery services, announces the expansion of its library synthesis capabilities with a focus on Enamine REAL compounds to further support the growing demands of agricultural and pharmaceutical companies, research institutes, and drug discovery centers.

  • 01 March 2024   News

    Enamine and Genez International Announce Strategic Collaboration to Launch ...

    We are excited to announce a strategic collaboration between Enamine, the world's leading provider of chemical building blocks, compound libraries, and biology services, and Genez International, a prominent enterprise with 15 years of experience in cross-border supply management, biopharmaceutical research and development, semiconductor equipment, and high-definition digital imaging systems.

RSC Adv. 2016, 6 (96), 93707-93714

DOI: 10.1039/C6RA09353A

Satska Y. A.; Mikhalyova E. A.; Chernenko Z. V.; Kolotilov S. V.; Zeller M.; Komarov I. V.; Tymtsunik A. V.; Tolmachev A.; Gavrilenko K. S.; Addison A. W.

The 3D coordination polymer [Co2(H2O)(cpda)2(py)4·py]n (cpdaH2 is trans-(S,S)-1,2-cyclopropane dicarboxylic acid, py = pyridine) crystallizes from pyridine as 1·5py (one py is not coordinated) and was characterized by X-ray single crystal diffraction. Desolvation of 1·5py was accomplished with decoordination of pyridine and transformation of the Co(II) octahedral coordination into tetrahedral, as confirmed by electronic spectroscopy. Sorption of individual optical isomers - (S)-2-butanol and (R)-2-butanol - from the gas phase at 303 K by desolvated 1 was studied, and for comparison sorption of these substrates by the chiral MOFs [Zn2(camph)2(bipy)]n (2) and [Zn2(camph)2(dpe)]n (3) was examined (camphH2 is (1R,3S)-camphoric acid, bipy is 4,4′-bipyridine, dpe is trans-1,2-di(4-pyridyl)ethylene). Chiral sites in 1-3 contain only one polar group (carboxylate) in close proximity to the asymmetric C atom, while the other groups contain only C-H or C-C bonds. In the cases of 1 or 2 the absorption isotherms grew abruptly at certain pressure values P, and these values were different for the (R) or (S) isomers' sorptions. Such differential growth can be accounted for through the polymeric framework's rearrangement induced by interaction with 2-butanol, the difference in P values for (R) and (S) isomers being an indication of different interaction energies for these isomers with the MOF. There was no significant difference between the values of total sorption capacity of 1 for the two enantiomers of 2-butanol at pressures close to the saturation vapor pressure. In contrast, the sorption capacity of 3 was higher for (R)-2-butanol than for (S)-2-butanol over the whole pressure range.

Sorption discrimination between secondary alcohol enantiomers by chiral alkyl-dicarboxylate MOFs

FOLLOW US