A New Chapter in Scientific Collaboration
Enamine Scientific Research Institute (Enamine SRI) is a newly established non-profit organization founded by Enamine in 2025. Its mission is to foster scientific research and innovation in the fields of chemistry, biology, computer science, and early-stage drug discovery in Ukraine. The institute also aims to support the professional growth of students and young scientists.
Enamine SRI functions as an independent structure within the Enamine ecosystem, serving as a hub for collaboration and knowledge exchange with research institutions worldwide. The Institute is fully supported by Enamine, which provides access to laboratory space, modern equipment, and all necessary infrastructure.
The Institute is led by Prof. Serhii Ryabukhin, Dr., a renowned Ukrainian chemist and expert in organic and medicinal chemistry.
Enamine is a scientifically driven company. Through the scientific approach, we have been routinely solving the research goals of our clients and collaborators. Today, we are happy to launch a separate non-profit institution that will be fully focused on the scientific aspects of modern science. We at Enamine are proud that after more than three decades of our history, we could step further and create a new research institution. We are sure it will help solve global scientific challenges,
– commented Dr. Andrey Tolmachev, Founder and Owner of Enamine.
In the era of open science and global collaboration, Enamine SRI is designed to serve as a bridge between commercial innovation and academic research. The Institute welcomes partnerships and diverse scientific initiatives from around the world.
- SpaceGrow: efficient shape-based virtual screening of billion-sized combinatorial fragment spaces J Comput Aided Mol Des 2024, 38 (1), 13. DOI: 10.1007/s10822-024-00551-7
- The HZB F2X-Facility—An Efficient Crystallographic Fragment Screening Platform Applied Research 2024, in press. DOI: 10.1002/appl.202400110
- Navigating Chemical Space Computational Drug Discovery: Methods and Applications 2024, 337-363. URL: 10.1002/9783527840748.ch15
- Generative artificial intelligence for small molecule drug design Curr Opin Biotechnol 2024, 89, 103175. DOI: 10.1016/j.copbio.2024.103175
- Application scenario-oriented molecule generation platform developed for drug discovery Methods 2024, 222, 112-121. DOI: 10.1016/j.ymeth.2023.12.009
- A data science roadmap for open science organizations engaged in early-stage drug discovery Nat Commun 2024, 15 (1), 5640. DOI: 10.1038/s41467-024-49777-x
- Identification of Novel Potent NSD2-PWWP1 Ligands Using Structure-Based Design and Computational Approaches J Med Chem 2024, 67 (11), 8962-8987. DOI: 10.1021/acs.jmedchem.4c00215
- Hit me with your best shot: Integrated hit discovery for the next generation of drug targets Drug Discov Today 2024, 29 (10), 104143. DOI: 10.1016/j.drudis.2024.104143
- E-pharmacophore and deep learning based high throughput virtual screening for identification of CDPK1 inhibitors of Cryptosporidium parvum Comput Biol Chem 2024, 112, 108172. DOI: 10.1016/j.compbiolchem.2024.108172
- Polypharmacology prediction: the long road toward comprehensively anticipating small-molecule selectivity to de-risk drug discovery Expert Opin Drug Discov 2024, 19 (9), 1043-1069. DOI: 10.1080/17460441.2024.2376643
- Enumerable Libraries and Accessible Chemical Space in Drug Discovery Computational Drug Discovery: Methods and Applications 2024, 315-336. DOI: 10.1002/9783527840748.ch14
- Target-Aware Drug Activity Model: A Deep Learning Approach to Virtual HTS Artificial Neural Networks and Machine Learning (ICANN 2024) 2024, 15025, 73-87. DOI: 10.1007/978-3-031-72359-9_6
- Streamlining Large Chemical Library Docking with Artificial Intelligence: the PyRMD2Dock Approach J Chem Inf Model 2024, 64 (7), 2143-2149. DOI: 10.1021/acs.jcim.3c00647
- Transformers for Molecular Property Prediction: Lessons Learned from the Past Five Years J Chem Inf Model 2024, 64 (16), 6259-6280. DOI: 10.1021/acs.jcim.4c00747
- Exploring Chemical Spaces in the Billion Range: Is Docking a Computational Alternative to DNA-Encoded Libraries? J Chem Inf Model 2024, in press. DOI: 10.1021/acs.jcim.4c00803
- High Performance Binding Affinity Prediction with a Transformer-Based Surrogate Model 2024 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW) 2024, 571-580. DOI: 10.1109/IPDPSW63119.2024.00114
- Sulfamide instead of urea in Biginelli reaction: from black box to reality Org Chem Front 2024, 11 (8), 2155-2160. DOI: 10.1039/d3qo01926h
- Ultra-large scale virtual screening identifies a small molecule inhibitor of the Wnt transporter Wntless iScience 2024, 27 (8), 110454. DOI: 10.1016/j.isci.2024.110454
- Large-Scale Pretraining Improves Sample Efficiency of Active Learning-Based Virtual Screening J Chem Inf Model 2024, 64 (6), 1882-1891. DOI: 10.1021/acs.jcim.3c01938
- Structure-based virtual screening of vast chemical space as a starting point for drug discovery Curr Opin Struct Biol 2024, 87, 102829. DOI: 10.1016/j.sbi.2024.102829
- In silico fragment-based discovery of CIB1-directed anti-tumor agents by FRASE-bot Nat Commun 2024, 15 (1), 5564. DOI: 10.1038/s41467-024-49892-9
- Discovery of the small molecular inhibitors against sclerostin loop3 as potential anti-osteoporosis agents by structural based virtual screening and molecular design Eur J Med Chem 2024, 271, 116414. DOI: 10.1016/j.ejmech.2024.116414
- Perspectives on current approaches to virtual screening in drug discovery Expert Opin Drug Discov 2024, 19 (10), 1173-1183. DOI: 10.1080/17460441.2024.2390511
- Docking and other computing tools in drug design against SARS-CoV-2 SAR QSAR Environ Res 2024, 35 (2), 91-136. DOI: 10.1080/1062936X.2024.2306336
- The Pan-Canadian Chemical Library: A Mechanism to Open Academic Chemistry to High-Throughput Virtual Screening Sci Data 2024, 11 (1), 597. DOI: 10.1038/s41597-024-03443-5
- The IMS Library: from IN-Stock to Virtual ChemMedChem 2024, 19 (20), e202400381. DOI: 10.1002/cmdc.202400381
- Pocket Crafter: a 3D generative modeling based workflow for the rapid generation of hit molecules in drug discovery J Cheminform 2024, 16 (1), 33. DOI: 10.1186/s13321-024-00829-w
- Structure-Based Ultra-Large Virtual Screenings Computational Drug Discovery: Methods and Applications: Volumes 1-2 2024, 441-470. URL: 10.1002/9783527840748.ch19
- ACEGEN: Reinforcement Learning of Generative Chemical Agents for Drug Discovery J Chem Inf Model 2024, 64 (15), 5900-5911. DOI: 10.1021/acs.jcim.4c00895
- Shape-Aware Synthon Search (SASS) for Virtual Screening of Synthon-Based Chemical Spaces J Chem Inf Model 2024, 64 (4), 1251-1260. DOI: 10.1021/acs.jcim.3c01865
- An artificial intelligence accelerated virtual screening platform for drug discovery Nat Commun 2024, 15 (1), 7761. DOI: 10.1038/s41467-024-52061-7
- In silico screening of LRRK2 WDR domain inhibitors using deep docking and free energy simulations Chem Sci 2024, 15 (23), 8800-8812. DOI: 10.1039/d3sc06880c
- Enhanced Calculation of Property Distributions in Chemical Fragment Spaces J Chem Inf Model 2024, 64 (6), 2008-2020. DOI: 10.1021/acs.jcim.4c00147
- A time-efficient computational binding affinity estimation protocol with utilization of limited experimental data: A case study for adenosine receptor Bulletin of the Korean Chemical Society 2024, 45 (9), 778-787. DOI: 10.1002/bkcs.12890
- Accelerating BRPF1b hit identification with BioPhysical and Active Learning Screening (BioPALS) ChemMedChem 2024, 19 (6), e202300590. DOI: 10.1002/cmdc.202300590
- DFRscore: Deep Learning-Based Scoring of Synthetic Complexity with Drug-Focused Retrosynthetic Analysis for High-Throughput Virtual Screening J Chem Inf Model 2024, 64 (7), 2432-2444. DOI: 10.1021/acs.jcim.3c01134
- Subpocket Similarity-Based Hit Identification for Challenging Targets: Application to the WDR Domain of LRRK2 J Chem Inf Model 2024, 64 (13), 5344-5355. DOI: 10.1021/acs.jcim.4c00601
- A Sober Look at LLMs for Material Discovery: Are They Actually Good for Bayesian Optimization Over Molecules? Proceedings of the 41st International Conference on Machine Learning 2024, 235, 25603-25622. URL: PMLR
- Quantum-Informed Molecular Representation Learning Enhancing ADMET Property Prediction J Chem Inf Model 2024, 64 (13), 5028-5040. DOI: 10.1021/acs.jcim.4c00772
- Fragment-based discovery of new potential DNMT1 inhibitors integrating multiple pharmacophore modeling, 3D-QSAR, virtual screening, molecular docking, ADME, and molecular dynamics simulation approaches Mol Divers 2024, in press. DOI: 10.1007/s11030-024-10837-5
- AIDDISON: Empowering Drug Discovery with AI/ML and CADD Tools in a Secure, Web-Based SaaS Platform J Chem Inf Model 2024, 64 (1), 3-8. DOI: 10.1021/acs.jcim.3c01016
- AI-accelerated protein-ligand docking for SARS-CoV-2 is 100-fold faster with no significant change in detection Sci Rep 2023, 13 (1), 2105. DOI: 10.1038/s41598-023-28785-9
- Integrative Drug Discovery Platform: A Modular Approach for Efficient and Automated Virtual Screening 2023 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2023, 365-372. DOI: 10.1109/BIBM58861.2023.10385402
- Targeting ROS production through inhibition of NADPH oxidases Nat Chem Biol 2023, 19 (12), 1540-1550. DOI: 10.1038/s41589-023-01457-5
- Discovery of novel A2AR antagonists through deep learning-based virtual screening AI in Life Science Research 2023, 3, 100058. DOI: 10.1016/j.ailsci.2023.100058
- Targeting ion channels with ultra-large library screening for hit discovery Front Mol Neurosci 2023, 16, 1336004. DOI: 10.3389/fnmol.2023.1336004
- Integrated molecular modeling and dynamics approaches revealed potential natural inhibitors of NF-κB transcription factor as breast cancer therapeutics J Biomol Struct Dyn 2023, 41 (24), 14715-14729. DOI: 10.1080/07391102.2023.2214209
- Therapeutic disruption of RAD52–ssDNA complexation via novel drug-like inhibitors NAR Cancer 2023, 5 (2), zcad018. DOI: 10.1093/narcan/zcad018
- Transferable Graph Neural Fingerprint Models for Quick Response to Future Bio-Threats 2023 International Conference on Machine Learning and Applications (ICMLA) 2023, 800-807. DOI: 10.1109/ICMLA58977.2023.00117
- Improving drug discovery with a hybrid deep generative model using reinforcement learning trained on a Bayesian docking approximation J Comput Aided Mol Des 2023, 37 (11), 507-517. DOI: 10.1007/s10822-023-00523-3
- De novo generated combinatorial library design Digital Discovery 2023, 3 (1), 122-135. DOI: 10.1039/d3dd00095h
- Discovery and development of small-molecule heparanase inhibitors Bioorg Med Chem 2023, 90, 117335. DOI: 10.1016/j.bmc.2023.117335
- Galileo: Three-dimensional searching in large combinatorial fragment spaces on the example of pharmacophores J Comput Aided Mol Des 2023, 37 (1), 1-16. DOI: 10.1007/s10822-022-00485-y
- The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking J Chem Inf Model 2023, 63 (8), 2267-2280. DOI: 10.1021/acs.jcim.2c01471
- Deep learning workflow for the inverse design of molecules with specific optoelectronic properties Sci Rep 2023, 13 (1), 20031. DOI: 10.1038/s41598-023-45385-9
- Epik: pKa and Protonation State Prediction through Machine Learning J Chem Theory Comput 2023, 19 (8), 2380-2388. DOI: 10.1021/acs.jctc.3c00044
- Keeping pace with the explosive growth of chemical libraries with structure-based virtual screening WIREs Computational Molecular Science 2023, 13 (6), e1678. DOI: 10.1002/wcms.1678
- Surely you are joking, Mr Docking! Chem Soc Rev 2023, 52 (3), 872-878. DOI: 10.1039/d2cs00948j
- Creation of targeted compound libraries based on 3D shape recognition Mol Divers 2023, 27 (2), 939-949. DOI: 10.1007/s11030-022-10447-z
- Pharmacophore-based virtual screening, 3D QSAR, Docking, ADMET, and MD simulation studies: An in silico perspective for the identification of new potential HDAC3 inhibitors Comput Biol Med 2023, 166, 107481. DOI: 10.1016/j.compbiomed.2023.107481
- Targeting in silico GPCR conformations with ultra-large library screening for hit discovery Trends Pharmacol Sci 2023, 44 (3), 150-161. DOI: 10.1016/j.tips.2022.12.006
- Design of the Global Health chemical diversity library v2 for screening against infectious diseases PLoS Negl Trop Dis 2023, 17 (12), e0011799. DOI: 10.1371/journal.pntd.0011799
- Machine Learning-Boosted Docking Enables the Efficient Structure-Based Virtual Screening of Giga-Scale Enumerated Chemical Libraries J Chem Inf Model 2023, 63 (18), 5773-5783. DOI: 10.1021/acs.jcim.3c01239
- Overlap of On-demand Ultra-large Combinatorial Spaces with On-the-shelf Drug-like Libraries Mol Inform 2023, 42 (1), e2200163. DOI: 10.1002/minf.202200163
- Evaluating Scalable Supervised Learning for Synthesize-on-Demand Chemical Libraries J Chem Inf Model 2023, 63 (17), 5513-5528. DOI: 10.1021/acs.jcim.3c00912
- Navigating large chemical spaces in early-phase drug discovery Curr Opin Struct Biol 2023, 80, 102578. DOI: 10.1016/j.sbi.2023.102578
- Uni-Dock: GPU-Accelerated Docking Enables Ultralarge Virtual Screening J Chem Theory Comput 2023, 19 (11), 3336-3345. DOI: 10.1021/acs.jctc.2c01145
- Transferring a Molecular Foundation Model for Polymer Property Predictions J Chem Inf Model 2023, 63 (24), 7689-7698. DOI: 10.1021/acs.jcim.3c01650
- Integrated data-driven and experimental approaches to accelerate lead optimization targeting SARS-CoV-2 main protease J Comput Aided Mol Des 2023, 37 (8), 339-355. DOI: 10.1007/s10822-023-00509-1
- Predicting the Likelihood of Molecules to Act as Modulators of Protein-Protein Interactions J Chem Inf Model 2023, 63 (1), 126-137. DOI: 10.1021/acs.jcim.2c00920
- Adaptive language model training for molecular design J Cheminform 2023, 15 (1), 59. DOI: 10.1186/s13321-023-00719-7
- CNN Use and Performance in Virtual Screening Artificial Intelligence in Bioinformatics and Chemoinformatics 2023, 189-207. DOI: 10.1201/9781003353768-10
- Computational approaches streamlining drug discovery Nature 2023, 616 (7958), 673-685. DOI: 10.1038/s41586-023-05905-z
- Managing the Drug Discovery Process (Second Edition) 2023, 1-639. DOI: 10.1016/C2020-0-01031-5
- Inhibiting a promiscuous GPCR: iterative discovery of bitter taste receptor ligands Cellular and Molecular Life Sciences 2023, 80 (4), 114. DOI: 10.1007/s00018-023-04765-0
- Fast Substructure Search in Combinatorial Library Spaces J Chem Inf Model 2023, 63 (16), 5133-5141. DOI: 10.1021/acs.jcim.3c00290
- Recent Developments in Ultralarge and Structure-Based Virtual Screening Approaches Annual Review of Biomedical Data Science 2023, 6, 229-258. DOI: 10.1146/annurev-biodatasci-020222-025013
- Computational Chemistry for the Identification of Lead Compounds for Radiotracer Development Pharmaceuticals 2023, 16 (2), 317. DOI: 10.3390/ph16020317
- Shape-Based Virtual Screening of a Billion-Compound Library Identifies Mycobacterial Lipoamide Dehydrogenase Inhibitors ACS Bio and Med Chem Au 2023, 3 (6), 507-515. DOI: 10.1021/acsbiomedchemau.3c00046
- Artificial intelligence and machine-learning approaches in structure and ligand-based discovery of drugs affecting central nervous system Mol Divers 2023, 27 (2), 959-985. DOI: 10.1007/s11030-022-10489-3
- Improved decision making with similarity based machine learning: applications in chemistry Machine Learning: Science and Technology 2023, 4 (4), 045043. DOI: 10.1088/2632-2153/ad0fa3
- DIY Virtual Chemical Libraries - Novel Starting Points for Drug Discovery ACS Med Chem Lett 2023, 14 (9), 1188-1197. DOI: 10.1021/acsmedchemlett.3c00146
- Chemspace Atlas: Multiscale Chemography of Ultralarge Libraries for Drug Discovery J Chem Inf Model 2022, 62 (18), 4537-4548. DOI: 10.1021/acs.jcim.2c00509
- Non-covalent SARS-CoV-2 Mpro inhibitors developed from in silico screen hits Sci Rep 2022, 12 (1), 2505. DOI: 10.1038/s41598-022-06306-4
- Small molecules and their impact in drug discovery: A perspective on the occasion of the 125th anniversary of the Bayer Chemical Research Laboratory Drug Discov Today 2022, 27 (6), 1560-1574. DOI: 10.1016/j.drudis.2022.02.015
- A multi-reference poly-conformational method for in silico design, optimization, and repositioning of pharmaceutical compounds illustrated for selected SARSCoV-2 ligands PeerJ 2022, 10, e14252. DOI: 10.7717/peerj.14252
- Targeting Echinococcus multilocularis PIM kinase for improving anti-parasitic chemotherapy PLoS Negl Trop Dis 2022, 16 (10), e0010483. DOI: 10.1371/journal.pntd.0010483
- Automating Genetic Algorithm Mutations for Molecules Using a Masked Language Model IEEE Transactions on Evolutionary Computation 2022, 26 (4), 793-799. DOI: 10.1109/TEVC.2022.3144045
- Exploration of Ultralarge Compound Collections for Drug Discovery J Chem Inf Model 2022, 62 (9), 2021-2034. DOI: 10.1021/acs.jcim.2c00224
- Virtual Screening in the Cloud Identifies Potent and Selective ROS1 Kinase Inhibitors J Chem Inf Model 2022, 62 (16), 3832-3843. DOI: 10.1021/acs.jcim.2c00644
- Identifying Novel Inhibitors for Hepatic Organic Anion Transporting Polypeptides by Machine Learning-Based Virtual Screening J Chem Inf Model 2022, 62 (24), 6323-6335. DOI: 10.1021/acs.jcim.1c01460
- Fully Automated Creation of Virtual Chemical Fragment Spaces Using the Open-Source Library OpenChemLib J Chem Inf Model 2022, 62 (9), 2202-2211. DOI: 10.1021/acs.jcim.1c01041
- The Ukrainian Factor in Early-Stage Drug Discovery in the Context of Russian Invasion: The Case of Enamine Ltd ACS Med Chem Lett 2022, 13 (7), 992-996. DOI: 10.1021/acsmedchemlett.2c00211
- Accelerators for Classical Molecular Dynamics Simulations of Biomolecules J Chem Theory Comput 2022, 18 (7), 4047-4069. DOI: 10.1021/acs.jctc.1c01214
- Challenges for chemistry in Ukraine after the war: Ukrainian science requires rebuilding and support Proc Natl Acad Sci U S A 2022, 119 (50), e2210686119. DOI: 10.1073/pnas.2210686119
- A multilevel generative framework with hierarchical self-contrasting for bias control and transparency in structure-based ligand design Nature Machine Intelligence 2022, 4 (12), 1130-1142. DOI: 10.1038/s42256-022-00564-7
- Calculating and Optimizing Physicochemical Property Distributions of Large Combinatorial Fragment Spaces J Chem Inf Model 2022, 62 (11), 2800-2810. DOI: 10.1021/acs.jcim.2c00334
- Self-Focusing Virtual Screening with Active Design Space Pruning J Chem Inf Model 2022, 62 (16), 3854-3862. DOI: 10.1021/acs.jcim.2c00554
- Rings in Clinical Trials and Drugs: Present and Future J Med Chem 2022, 65 (13), 8699-8712. DOI: 10.1021/acs.jmedchem.2c00473
- Magnet for the Needle in Haystack: "crystal Structure First" Fragment Hits Unlock Active Chemical Matter Using Targeted Exploration of Vast Chemical Spaces J Med Chem 2022, 65 (23), 15663-15678. DOI: 10.1021/acs.jmedchem.2c00813
- SynthI: A New Open-Source Tool for Synthon-Based Library Design J Chem Inf Model 2022, 62 (9), 2151-2163. DOI: 10.1021/acs.jcim.1c00754
- Artificial Intelligence in Compound Design Artificial Intelligence in Drug Design 2022, 2390, 349-382. DOI: 10.1007/978-1-0716-1787-8_15
- Maximizing the integration of virtual and experimental screening in hit discovery Expert Opin Drug Discov 2022, 17 (6), 629-640. DOI: 10.1080/17460441.2022.2085685
- One-pot parallel synthesis of 1,3,5-trisubstituted 1,2,4-triazoles Mol Divers 2022, 26 (2), 993-1004. DOI: 10.1007/s11030-021-10218-2
- Towards rational computational peptide design Front Bioinform 2022, 2 (), 1046493. DOI: 10.3389/fbinf.2022.1046493
- Hit Expansion of a Noncovalent SARS-CoV-2 Main Protease Inhibitor ACS Pharmacol Transl Sci 2022, 5 (4), 255-265. DOI: 10.1021/acsptsci.2c00026
- Identification of potential SARS-CoV-2 Mpro inhibitors integrating molecular docking and water thermodynamics J Biomol Struct Dyn 2022, 40 (11), 5079-5089. DOI: 10.1080/07391102.2020.1867642
- Artificial intelligence–enabled virtual screening of ultra-large chemical libraries with deep docking Nature Protocols 2022, 17 (3), 672-697. DOI: 10.1038/s41596-021-00659-2
- Comparison of Combinatorial Fragment Spaces and Its Application to Ultralarge Make-on-Demand Compound Catalogs J Chem Inf Model 2022, 62 (3), 553-566. DOI: 10.1021/acs.jcim.1c01378
- Benchmarking ensemble docking methods in D3R Grand Challenge 4 J Comput Aided Mol Des 2022, 36 (2), 87-99. DOI: 10.1007/s10822-021-00433-2
- Ultrahigh Throughput Protein–Ligand Docking with Deep Learning Artificial Intelligence in Drug Design 2022, 2390, 301-319. DOI: 10.1007/978-1-0716-1787-8_13
- Synthon-based ligand discovery in virtual libraries of over 11 billion compounds Nature 2022, 601 (7893), 452-459. DOI: 10.1038/s41586-021-04220-9
- A Review on Parallel Virtual Screening Softwares for High-Performance Computers Pharmaceuticals 2022, 15 (1), 63. DOI: 10.3390/ph15010063
- Identification of novel protein kinase C-βII inhibitors: virtual screening, molecular docking and molecular dynamics simulation studies J Mol Model 2022, 28 (5), 117. DOI: 10.1007/s00894-022-05104-z
- Computational Workflow for Accelerated Molecular Design Using Quantum Chemical Simulations and Deep Learning Models Smoky Mountains Computational Sciences and Engineering Conferenc, SMC 2022 2022, 3-19. DOI: 10.1007/978-3-031-23606-8_1
- Molecular docking-based computational platform for high-throughput virtual screening CCF Trans High Perform Comput 2022, 4 (1), 63-74. DOI: 10.1007/s42514-021-00086-5
- Call for Papers for the Special Issue: From Reaction Informatics to Chemical Space J Chem Inf Model 2021, 61 (4), 1531-1532. DOI: 10.1021/acs.jcim.1c00321
- Artificial intelligence in drug discovery: what is realistic, what are illusions? Part 2: a discussion of chemical and biological data Drug Discov Today 2021, 26 (4), 1040-1052. DOI: 10.1016/j.drudis.2020.11.037
- Drug discovery for mycobacterium tuberculosis using structure-based computer-aided drug design approach Int J Mol Sci 2021, 22 (24), 13259. DOI: 10.3390/ijms222413259
- Enabling rapid COVID-19 small molecule drug design through scalable deep learning of generative models IJHPCA 2021, 35 (5), 469-482. DOI: 10.1177/10943420211010930
- Enamine Ltd.: The Science and Business of Organic Chemistry and Beyond Eur J Org Chem 2021, 2021 (47), 6474-6477. DOI: 10.1002/ejoc.202101210
- Discovery of Small-Molecule Inhibitors of SARS-CoV-2 Proteins Using a Computational and Experimental Pipeline Front Mol Biosci 2021, 8, 678701. DOI: 10.3389/fmolb.2021.678701
- Best Practices for Docking-Based Virtual Screening Molecular Docking for Computer-Aided Drug Design 2021, 75-98. DOI: 10.1016/B978-0-12-822312-3.00001-1
- Deep learning in virtual screening: Recent applications and developments Int J Mol Sci 2021, 22 (9), 4435. DOI: 10.3390/ijms22094435
- C@PA: Computer-Aided Pattern Analysis to Predict Multitarget ABC Transporter Inhibitors J Med Chem 2021, 64 (6), 3350-3366. DOI: 10.1021/acs.jmedchem.0c02199
- Accelerating high-throughput virtual screening through molecular pool-based active learning Chem Sci 2021, 12 (22), 7866-7881. DOI: 10.1039/d0sc06805e
- Web-Based Quantitative Structure–Activity Relationship Resources Facilitate Effective Drug Discovery Top Curr Chem (Cham) 2021, 379 (6), 37. DOI: 10.1007/s41061-021-00349-3
- Challenges Encountered Applying Equilibrium and Nonequilibrium Binding Free Energy Calculations J Phys Chem B 2021, 125 (17), 4241-4261. DOI: 10.1021/acs.jpcb.0c10263
- From computer-aided drug discovery to computer-driven drug discovery Drug Discov Today Technol 2021, 39, 111-117. DOI: 10.1016/j.ddtec.2021.08.001
- Structure-based drug repurposing against COVID-19 and emerging infectious diseases: Methods, resources and discoveries Briefings in Bioinformatics 2021, 22 (6), bbab113. DOI: 10.1093/bib/bbab113
- Design concepts for DNA-encoded library synthesis Bioorg Med Chem 2021, 41, 116189. DOI: 10.1016/j.bmc.2021.116189
- Prediction of chemical compounds properties using a deep learning model Neural Comput & Applic 2021, 33 (20), 13345-13366. DOI: 10.1007/s00521-021-05961-4
- Discovery of Novel BRD4 Ligand Scaffolds by Automated Navigation of the Fragment Chemical Space J Med Chem 2021, 64 (24), 17887-17900. DOI: 10.1021/acs.jmedchem.1c01108
- Topological Similarity Search in Large Combinatorial Fragment Spaces J Chem Inf Model 2021, 61 (1), 238-251. DOI: 10.1021/acs.jcim.0c00850
- Monitoring Large Scale Supercomputers: A Case Study with the Lassen Supercomputer 2021 IEEE International Conference on Cluster Computing (CLUSTER) 2021, 468-480. DOI: 10.1109/Cluster48925.2021.00057
- Generative Deep Learning for Targeted Compound Design J Chem Inf Model 2021, 61 (11), 5343-5361. DOI: 10.1021/acs.jcim.0c01496
- Generative Models for de Novo Drug Design J Med Chem 2021, 64 (19), 14011-14027. DOI: 10.1021/acs.jmedchem.1c00927
- Chemical Topic Modeling - An Unsupervised Approach Originating from Text-mining to Organize Chemical Data Artificial Intelligence in Drug Discovery 2021, 17-44. DOI: 10.1039/9781788016841-00015
- Structure-based virtual screening of ultra-large library yields potent antagonists for a lipid gpcr Biomolecules 2020, 10 (12), 1-15. DOI: 10.3390/biom10121634
- BRADSHAW: a system for automated molecular design J Comput Aided Mol Des 2020, 34 (7), 747-765. DOI: 10.1007/s10822-019-00234-8
- Adapting CHMTRN (CHeMistry TRaNslator) for a New Use J Chem Inf Model 2020, 60 (7), 3336-3341. DOI: 10.1021/acs.jcim.0c00448
- Computational Approaches to Identify a Hidden Pharmacological Potential in Large Chemical Libraries Supercomputing Frontiers and Innovations 2020, 7 (3), 57-76. DOI: 10.14529/jsfi200306
- Generating Multibillion Chemical Space of Readily Accessible Screening Compounds iScience 2020, 23 (11), 101681. DOI: 10.1016/j.isci.2020.101681
- Computer-aided estimation of biological activity profiles of drug-like compounds taking into account their metabolism in human body Int J Mol Sci 2020, 21 (20), 1-13. DOI: 10.3390/ijms21207492
- Supercomputer-Based Ensemble Docking Drug Discovery Pipeline with Application to Covid-19 J Chem Inf Model 2020, 60 (12), 5832-5852. DOI: 10.1021/acs.jcim.0c01010
- Characterizing human odorant signals: Insights from insect semiochemistry and in silico modelling Philos Trans R Soc Lond B Biol Sci 2020, 375 (1800), 20190263. DOI: 10.1098/rstb.2019.0263
- Chemoinformatics-based enumeration of chemical libraries: a tutorial J Cheminform 2020, 12 (1), 64. DOI: 10.1186/s13321-020-00466-z
- In silico strategies in tuberculosis drug discovery Molecules 2020, 25 (3), 665. DOI: 10.3390/molecules25030665
- A Fragment Library of Natural Products and its Comparative Chemoinformatic Characterization Mol Inform 2020, 39 (11), e2000050. DOI: 10.1002/minf.202000050
- Autonomous Discovery in the Chem Scis Part II: Outlook Angew Chem Int Ed Engl 2020, 59 (52), 23414-23436. DOI: 10.1002/anie.201909989
- Electrochemical Scaled-up Synthesis of Cyclic Enecarbamates as Starting Materials for Medicinal Chemistry Relevant Building Bocks Advanced Synthesis & Catalysis 2020, 362 (15), 3229-3242. DOI: 10.1002/adsc.202000450
- ZINC20 - A Free Ultralarge-Scale Chemical Database for Ligand Discovery J Chem Inf Model 2020, 60 (12), 6065-6073. DOI: 10.1021/acs.jcim.0c00675
- SAVI, in silico generation of billions of easily synthesizable compounds through expert-system type rules Sci Data 2020, 7 (1), 384. DOI: 10.1038/s41597-020-00727-4
- Automated de Novo Design in Medicinal Chemistry: Which Types of Chemistry Does a Generative Neural Network Learn? J Med Chem 2020, 63 (16), 8809-8823. DOI: 10.1021/acs.jmedchem.9b02044
- Can easy chemistry produce complex, diverse, and novel molecules? Drug Discov Today 2020, 25 (12), 2174-2181. DOI: 10.1016/j.drudis.2020.09.027
- Autonomous Discovery in the Chem Scis Part I: Progress Angew Chem Int Ed Engl 2020, 59 (51), 22858-22893. DOI: 10.1002/anie.201909987
- Focused Library Generator: case of Mdmx inhibitors J Comput Aided Mol Des 2020, 34 (7), 769-782. DOI: 10.1007/s10822-019-00242-8
- Multi-objective biofilm algorithm (MOBifi) for de novo drug design with special focus to anti-diabetic drugs Applied Soft Computing 2020, 96, 106655. DOI: 10.1016/j.asoc.2020.106655
- Screening of metal ions and organocatalysts on solid support-coupled DNA oligonucleotides guides design of DNA-encoded reactions Chem Sci 2019, 10 (45), 10481-10492. DOI: 10.1039/c9sc04708e
- SAR by space: Enriching hit sets from the chemical space Molecules 2019, 24 (17), 3096. DOI: 10.3390/molecules24173096
- Comparison of Large Chemical Spaces ACS Med Chem Lett 2019, 10 (10), 1504-1510. DOI: 10.1021/acsmedchemlett.9b00331
- Using Machine Learning to Inform Decisions in Drug Discovery: An Industry Perspective ACS Symposium Series 2019, 1326, 81-101. DOI: 10.1021/bk-2019-1326.ch005
- Prediction and Experimental Confirmation of Novel Peripheral Cannabinoid-1 Receptor Antagonists J Chem Inf Model 2019, 59 (9), 3996-4006. DOI: 10.1021/acs.jcim.9b00577
- Recent applications of machine learning in medicinal chemistry Bioorg Med Chem Letters 2018, 28 (17), 2807-2815. DOI: 10.1016/j.bmcl.2018.06.046
- Practical aspects of machine learning for the design-synthesis-purify-assay workflow Chimia 2018, 72 (9), 648-649. DOI: 10.2533/chimia.2018.648
- (Chlorosulfonyl)benzenesulfonyl Fluorides - Versatile Building Blocks for Combinatorial Chemistry: Design, Synthesis and Evaluation of a Covalent Inhibitor Library ACS Comb Sci 2018, 20 (11), 672-680. DOI: 10.1021/acscombsci.8b00130
- Facile One-Pot Parallel Synthesis of 3-Amino-1,2,4-triazoles ACS Comb Sci 2018, 20 (7), 461-466. DOI: 10.1021/acscombsci.8b00060
- Straightforward hit identification approach in fragment-based discovery of bromodomain-containing protein 4 (BRD4) inhibitors Bioorg Med Chem 2018, 26 (12), 3399-3405. DOI: 10.1016/j.bmc.2018.05.010
- An Old Story in the Parallel Synthesis World: An Approach to Hydantoin Libraries ACS Comb Sci 2018, 20 (1), 35-43. DOI: 10.1021/acscombsci.7b00163
- Design, Virtual Screening, and Synthesis of Antagonists of αiIbβ3 as Antiplatelet Agents J Med Chem 2015, 58 (19), 7681-7694. DOI: 10.1021/acs.jmedchem.5b00865
- Exploring virtual scaffold spaces Scaffold Hopping in Medicinal Chemistry 2013, 83-104. DOI: 10.1002/9783527665143.ch05
- Approach to the library of fused pyridine-4-carboxylic acids by combes-type reaction of acyl pyruvates and electron-rich amino heterocycles J Comb Chem 2010, 12 (4), 510-517. DOI: 10.1021/cc100040q