Trifluoromethyl vinamidinium salt – the promising precursor for fused pyridine-contained heterocycles

Enamine

S. Ryabukhin, A. Mityuk, O. Oksiuta, G. Grabchuk, D. Volochnyuk

Background and synthetic strategy

Background of the work:

- extreme importance of fluorine for medicinal and agrochemistry;
- the presence of fluorine riches ~20% among all marketed drugs;
- application of fluorine in drug discovery supported by ¹⁹F NMR technique;
- underrepresentation of fused pyridines bearing CF_3 -label in β -position compared to the α and γ -derivatives caused by poor diversity abilities of the existing methods.

Research Results & Representative Examples

Elaborated method towards the trifluoromethyl vinamidinium salt:

Contact

Sergey V. Ryabukhin, Prof. Dr. Sci.; Dmitriy M. Volochnyuk, Prof. Dr. Sci. s.v.ryabukhin@gmail.com, d.volochnyuk@gmail.com Achievements of the project:

- an efficient multigram scale synthetic protocol for preparing functionalized fused b-CF₃ pyridines by Combes-type cyclization was devised;
- the scope of the substrates was investigated and determined;
- the alternative ways of the reaction were disclosed;
- the cyclization direction depends on the value of C- over N-nucleophilicity of ambident amine substrates;
- the **mini-library of potential fragments** for ¹⁹F NMR-based fragment-based drug discovery was synthesized.

Results have been published as

Trifluoromethyl Vinamidinium Salt as a Promising Precursor for Fused β-Trifluoromethyl Pyridines. *J. Org. Chem.* **2023**, *88* (5), 2961-2972. https://doi.org/10.1021/acs.joc.2c02684

Scope and Limitations of the Method

Functionalization

• the obtained products are easily able to further transformations leading to functionalized derivatives