

Recent Advances in Difluorocyclopropanation of alkenes using Ruppert–Prakash reagent.

S. Ryabukhin, P. Nosik, D. Volochnyuk, O. Grygorenko

Introduction and Aim

Modern medicinal chemistry widely exploits two structural motifs to improve physico-chemical characteristics of the compounds: fluorine atoms and small rings.

The best way for generating the smallest one example of them, difluorocyclopropane, is difluorocyclopropanation of alkenes by difluorocarbene or its synthetic analogues. The Ruppert -Prakash reagent (CF_3SiMe_3) is one of the most convenient difluorocarbene equiavent to achieve that transformation. Nevertheless, it was studied a bit to date, mostly with nonfunctionalized substrates.

We optimized the reaction conditions and elaborated the methodology for using this reagent for a wide set of substrates called "slow addition protocol". In a series of works, we described the synthesis of various functionalized difluorocyclopropanes valuable building blocks for medicinal chemistry in a multigram scale by the evaluation of this protocol. The scope and limitations was significantly enlarged to electron-deficient substrates, the yields were extremely increased and the conditions was strongly optimized.

Process Optimization & Scope

4. P. S. Nosik, Eur. J. Org. Chem. 2019, 4311-4319.