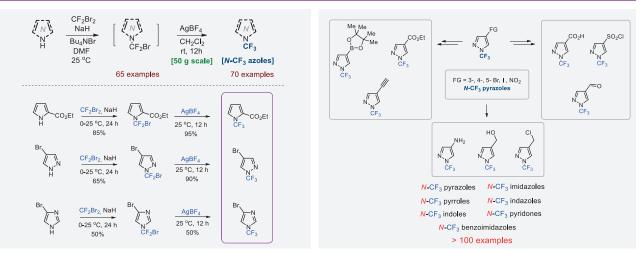

Practical scalable synthesis of N-CF, substituted heterocycles

I. Denysenko, V. Kozlyk, A. Boretskyi, S. Trofymchuk, A. A. Tolmachev, P. K. Mykhailiuk

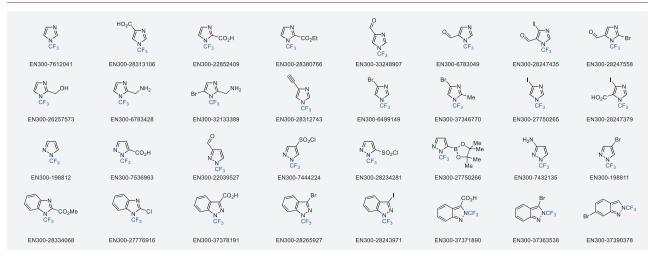
Introduction and Aim

N-CF3 azoles are very promising and valuable targets for medicinal chemistry. Recently, Schiesser and coworkers from AstraZeneca showed that N-CF₃ azoles possess high hydrolytic, chemical and metabolic stability.¹ Moreover, N-CF₃ azoles are considered as stable and more lipophilic surrogates for popular N-CH₃ azoles in medicinal chemistry. Limited utilization of N-CF₃ azoles is mainly due to the lack of scalable methods to prepare them.^{2,3} Herein we report on an alternative and scalable method for the preparation of N-CF3 azoles by fluorination of the corresponding N-CF₂Br substituted precursors using AgBF₄ under mild conditions.⁴

Glucocorticoid receptor modulator US2009/0093485, A1 AstraZeneca


Inhibitors of interleukin-1 activity WO2020/18970, A1 Genentech

Monoacylolycerol lipase modulator WO2020/65613 A1 Janssen Pharm


Crop protection WO2020/30503, A1 Syngenta

Kinase Inhibitor US2020/0270231, A1 Insilico Medicii

Synthesis and modification

Results

Contact

Iryna Denysenko, PhD i.denysenko@mail.enamine.net, Enamine Ltd, www.enamine.net 78 Chervonotkatska St, 02660 Kyiv, Ukraine

References

1. S. Schiesser et al. J. Med. Chem. 2020, 63, 21, 13076-13089.

- C. Schlesser et al. 2. Med. Othern. 2020, 60, e1, 13010–13005.
 R. Z. Zhang et al. Angew. Chem. Int. Ed. 2022, 61, e202110749.
 T. M. Sokolenko et al. Chem. Heterocycl. Comp. 2009, 945, 430–435.
 I. Denysenko, V. Kozlyk, P. Mykhailiuk. Under preparation.