

Efficient one-step approach to annulated tetrahydrofurans: supporting the search for new potent CCR2 receptor antagonists

V. Turcheniuk, A. Kapeliukha, E. Ostapchuk, S. Bondarenko, A. Hanopolskyi, Dmytro M. Volochnyuk, Serhiy V. Ryabukhin

Background and synthetic strategy

Oxygen-rich low molecular 3D frameworks with the restricted conformation are valuable tools for medicinal chemistry:

• a shift from a carbon backbone to the oxygen containing counterpart ($\mathbf{CH_2} \rightarrow \mathbf{O}$) decreases lipophilicity, thus empowering those fragments to be implemented into a drug scaffold and resulting in both pronounced target affinity and bioavailability

A remarkable example on the issue is development of a selective CCR2 receptor antagonist by *Janssen*:

• there is significant ongoing effort directed towards the optimization of CCR2 antagonists;

• the possibility of modifying the cyclopentane cycle with a change in the structure of the scaffold has not been studied.

Synthetic results

Research outlines:

- multigram scale (>200 g from 1 synthetic run) method for the synthesis of bicyclic fused tetrahydrofuranes with various sizes and natures of the adjacent rings;
- highly reactive vinyl alcohol moiety allowing its conversion to the corresponding cyclic acetals immediately under solvolytic conditions:
- the building blocks can significantly impact the lead optimization approaches *via* increasing the toolbox of synthetic chemists.

Representative Examples

Contact