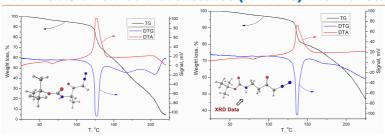
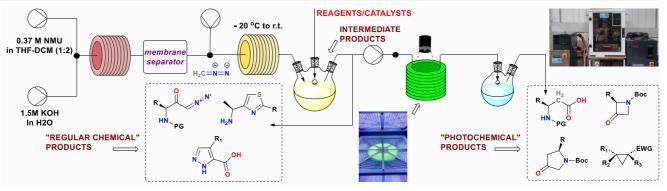

Up-Scale Diazomethane Generation in Flow: Safe Handling and Broad Use in **Organic Synthesis**

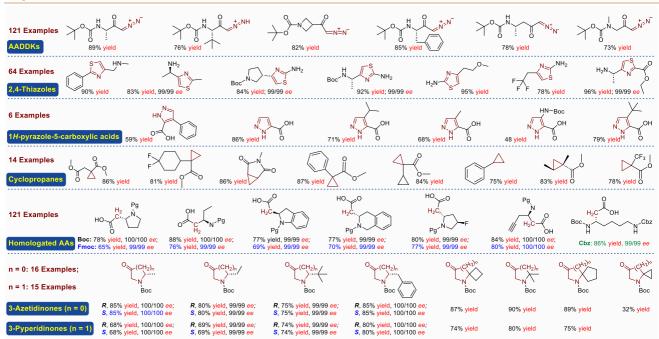
Dmytro Volochnyuk, Viacheslav Pendiukh, Olexandr Pashenko, Olexandr Rozhenko, Serhiy Ryabukhin


Background of the project

Dry Diazomethane in Flow: Safety, Large Scale, Wide Diversity of Products

- A flow system for generating diazomethane enables the synthesis of MedChem building blocks and intermediates with productivity up to 0.45 mol/h, scalable to hundreds of grams per operation.
- Diazoketones, synthesized using this system, are valuable, bench-stable reagents¹ on their own, and can be used for synthesis of 2,4-thiazoles² and pyrazoles, as well as other cyclization reactions.
- The use of flow photoreactor enables the synthesis of β amino acids³, azetidinones, piperidinones, and cyclopropenes, with the preservation of chirality of the starting acids for diazoketones and their derivatives.


Amino Acid-Derived Diazoketones (AADDKs) Thermal Stability Summary: Safe, Bench Stable


- AADDKs remain stable after a year at room temperature, showing promise as bench-stable synthetic equivalents for halogenoketones.
- TGA of diazoketones show their decomposition between 110-142 °C, exothermically, indicating medium thermal risk and reaction hazard indices.

T(1st process), °C	137	142
T(2 nd process), °C	160	167
E _A (1st process), kJ/mol	220	115
T, °C range for EA	140-153	142-160

Flow-Generated Diazomethane in Reaction Cascade: Setup and Scope of the Products

Synthetic results

Contact

- Sergey V. Ryabukhin, Prof. Dr. Sci.; Dmitriy M. Volochnyuk, Prof. Dr. Sci. s.v.ryabukhin@gmail.com, d.volochnyuk@gmail.com.

- Pendiukh V. V. et al. Org. Process Res. Dev. 2024, 28, 165–176; Pendiukh V. V. et al. ChemRxiv 2024, DOI: 10.26434/chemrxiv-2024-r2knw;
- Pendiukh V. V. et al. ChemRxiv 2024, DOI: 10.26434/chemrxiv-2024-fqdl6;