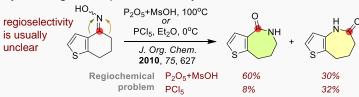
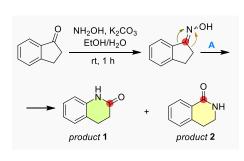

Regioselectivity study of Beckman reaction as a pathway for synthesis of bicyclic anilines and benzylamines


Bohdan Yu. Solod, Yevhen M. Ostapchuk, Mykhailo V. Vovk, Tetiana V. Druzhenko, Dmytro M. Volochnyuk, Serhiy V. Ryabukhin

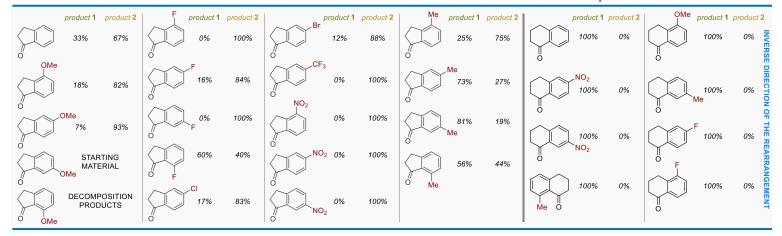
Background of the project

The Beckmann rearrangement is a highly versatile and industrially important reaction that plays a crucial role in the production of polymers & pharmaceuticals due to its ability to efficiently produce lactams and amides

OBSTACLE: Low regioselectivity of the Beckmann rearrangement of bicyclic aryl ketones poses a great problem to its wide application in synthetic organic and process chemistry:


THIS PROJECT:

- * bicyclic aryl ketones with cyclopentane and cyclohexane moieties
- * A wide range of EWG, 'neutral', and EDG substituents placed in the aromatic ring in different positions
- thoroughly optimized rearrangement conditions



Contact

Optimization of the rearrangement conditions and 'structure/direction' relationships

- CONDITIONS A 1) MsCl, DCM, rt, 1 h (0%) 2) MsCl, DCM, rt, 3 h (3%) 3) MsCl, DCM, rt, 12 h (7%) MsCl. DCM, rt. 24 h (9%) 5) TsCl, Pyridine, rt, 3 h (4%) 6) TsCl. Pyridine, rt, 16 h (15%) 7) TsCl, Pyridine, 60 °C, 3 h (18%) 8) TsCl. Pvridine, 60 °C, 16 h (34%) 9) SOCl₂, THF, rt, 1 h (7%) 10) SOCI₂, THF, rt, 3 h (13%) 11) SOCI₂, THF, 50 °C, 1 h (68%) 12) SOCI₂ THF, 80 °C, 1 h (84%) 13) H₂SO₄ (conc.), rt, 3 h (5%)
 - 14) H₂SO₄ (conc.), rt, 16 h (8%) 15) H₂SO₄ (conc.), 60 °C, 3 h (15%) Multiparameter optimization 16) H₂SO₄ (conc.), 60 °C, 16 h (33%) of rearrangement conditions 17) H₂SO₄ (conc.), 100 °C, 1 h (68%) includes different reagents, 18) H₂SO₄ /H₂O (20%), rt, 16 h (5%) solvents, temperature modes, 19) H₂SO₄ /H₂O (20%), 60 °C, 3 h (7%) 20) H₂SO₄ /H₂O (20%), 60 °C, 16 h (17%) 21) PPA, 60 °C, 3 h (4%) 22) PPA, 60 °C, 16 h (15%) 23) PPA, 100 °C, 1 h (54%) 24) PPA, 100 °C, 3 h (75%) 25) PPA, 120 °C, 15 min (86%) 26) PPA, 150 °C, 5 min (87%)
 - and reaction times Identified the three reaction conditions providing the best results, which were selected for the further substrates screening

Future horizons

- DFT calculations and building a predicting model for the studied aryl ketones allowing for the efficient expansion of the lactams chemical space
- * To involve in the project a wide range of heteroaromatic ketones (208 substrates in total, n = 1, 2, Q = heteroatom, A = heteroatom or carbon)

CURENTLY ONGOING