

Medchem Perspectives of Bis-Nor-Adamantane (Stellane) & Nor-Adamantane Derivatives

O. Smyrnov, K. Melnykov, O. Pashenko, D. Volochnyuk, S. Ryabukhin

Background of the project

Challenges in the Synthesis of MedChem Relevant Cages and their Value:

- Bis-nor-adamantanes (stellanes) where discovered as unique ortho-isosteres of benzene. Together with new nor-adamantane derivatives, stellanes represent previously unavailable class of cage MedChem scaffolds with notable potential for drug discovery.
- Synthesis of both nor- and bis-nor adamantane key precursors poses significant challenge; however, it has been developed in our group previously¹.

Our Goal: to investigate the reactivity of the nor- and bis-nor-adamantane cores and the opportunities for their derivatization; to expand the overall scope of the available building blocks based on these scaffolds.

1,5-Disubstituted Stellanes as Benzene Isosteres; Novel Nor-Adamantanes

Evaluation via XRD Analysis:

- 1,5-Dicarboxylic acid has been revealed as an optimal saturated isostere for ortho-benzene where substituents exhibit the in-plane topology.
- 1,5-Stellanes unique spatial properties render them **invaluable cage MedChem scaffolds**, with the potential to enhance drug efficacy and specificity.

The closest o-benzene mimetic existing:

 $d_2 = 3.06 \text{ Å}$ $d_1 = 3.05 \text{ Å}$ $s_2 = 1.64 \text{ Å}$ $s_1 = 1.41 \text{ Å}$ $a_2 = 119.01^\circ$ $a_1 = 122.49^\circ$

Novel Nor-Adamantanes:

We were able to decarboxylate methyl-7-oxo-2-nor-adamantane -carboxylate to **obtain the ketone for further derivatization**.

• We are working on the synthesis of the acid.

Scope of Di-Substituted Stellanes (A) and Mono-Substituted (B)

Current Limitations to Derivatization of Stellanes

- Hydrolysis of methyl-5-isocyanato-stellane-1-carboxylate leads to fragmentation of stellane core, while alcoholysis leaves it intact.
- Coupling of 1-iodostellane with phenylboronic acid in various conditions, as well as with (Bpin)2 ester also resulted pure starting material

Contact