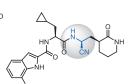
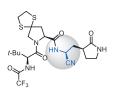
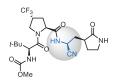

Aminonitrile Warheads for Cysteine Binding

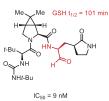
Introduction

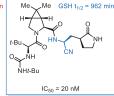

Warheads are reactive moieties that enable covalent binding to target enzymes. a-Aminonitriles are particularly effective for targeting cysteine residues, as they minimize off-target interactions with intracellular glutathione. Recently, aminonitrile-based inhibitors have been developed for dipeptidyl peptidase 1 (brensocatib)1 and the SARS-CoV-2 main protease (nirmatrelvir, simnotrelvir, ibuzatrelvir).²⁻⁴ Explore our aminonitriles for your cysteine-targeting applications!

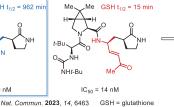

Nirmatrelvir (PF-07321332) inhibitor of SARS-CoV2 main protease FDA approved 2023 Prizer


Brensocatib (AZD7986) inhibitor of dipeptidyl peptidase 1 Phase 2 trials ongoing AstraZeneca

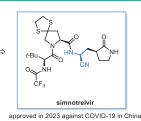
Pomotrelvir (PBI-0451) inhibitor of SARS-CoV2 main protease Phase 2 trials 2023 Pardes Biosciences

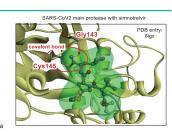



Simnotreivir (SIM0417) inhibitor of SARS-CoV2 main protease approved in China in 2024
Simcere Pharmaceutical



Ibuzatrelvir (PF-07817883) inhibitor of SARS-CoV2 main protease Phase 3 trials ongoing Pfizer


Case study



Me

EN300-7355051

EN300-126476

EN300-28638098

EN300-125849

EN300-1708503

We offer: over 100 α -aminonitriles from stock on 5-10 gram scale.

The creation of the warming management of the grain scale.					
H_2C CN $\ddot{N}H_2$	Me CN	Me CN	$Me \underbrace{CN}_{NH_2}$	Me CN NH ₂	$Me \overset{Me}{\underset{NH_2}{\longleftarrow}} CN$
EN300-45753051	EN300-138803	EN300-141729	EN300-120035	EN300-45648908	EN300-140211
HC NH ₂	MeS CN	$Me \underbrace{\hspace{1cm} O \hspace{1cm} CN}_{Me} \hspace{1cm} NH_2$	CF ₃ CN NH ₂	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$HO \longrightarrow CN \\ NH_2$
EN300-39870511	EN300-1600617	EN300-155118	EN300-139181	EN300-716209	EN300-137306
CF ₃ CN NH ₂	CN NH ₂	CN NH ₂	STCN NH ₂	BocN CN	N CN
EN300-51908974	EN300-4974653	EN300-7423382	EN300-46897716	EN300-46772671	EN300-6783014
N CN	CN NH ₂	CN NH ₂	OCN NH ₂	CN NH ₂	N CN
EN300-37468194	EN300-72907	EN300-99782	EN300-90371	EN300-27114541	EN300-90478
CN	Me CN	CN	CN	CN	HN CN

EN300-79412

References

1. K. Doyle et al. J. Med. Chem. 2016, 59, 9457

EN300-26979239

2. B. Cotrim et al. Aust. J. Chem. 2022, 75, 487

- 3. X. Jiang et al. Nat. Commun. 2023, 14, 6463.
- 4. C. Allerton et al. J. Med. Chem. 2024, 67, 13550

EN300-100403